
www.enosislearning.com

Advance JAVA Tutorials

1

Advance JAVA Tutorials
www.enosislearning.com

www.enosislearning.com

Advance JAVA Tutorials

2

ADVANCE JAVA OVERVIEW 5

Introduction to Advanced JAVA 5

Need for Advance Java 5

CHAPTER 1 MULTITHREADING 6

Introduction to Multithreading 6

The main thread 7

Life cycle of a Thread 8

How to create a thread 10

1. Implementing the Runnable Interface 10

2. Extending Thread class 11

Concept of Synchronization 16

Interthread Communication 20

CHAPTER 2 COLLECTION FRAMEWORK 21

Introduction to Collection Framework 21

The Collection Interface 22

The List Interface 24

The Set Interface 25

The Queue Interface 25

The Collection classes 26

Comparator Interface 48

CHAPTER 3 JAVA JDBC 55

Introduction to JDBC Concept 55

JDBC Odbc Bridge Driver 64

CHAPTER 4 SERVLET 82

www.enosislearning.com

Advance JAVA Tutorials

3

Introduction to Servlet 82

Advantage of Servlet 83

GenericServlet Class 86

Life Cycle of Servlet 87

FirstServlet.java 98

ServletContext Interface in Servlet 104

Why to use Session Tracking ? : 112

Why Http is design as stateless protocol ? 113

Type of Coockies 114

Read Cookies for browser 117

Syntax 119

URL Rewriting in Servlet 121

Methods of HttpSession interface 124

CHAPTER 5 JSP 127

Introduction to JSP 127

Why JSP ? 128

JSP Tag 128

JSP Life Cycle 129

Life cycle of a JSP Page 129

JSP Declaration Tag 137

Syntax 138

JSP Expression Tag 138

JSP Scriptlet Tag 139

List of all 9 implicit object are; 139

Request Implicit Object 140

Response Implicit Object 141

Config Implicit Object 142

Page Implicit Object 143

Session Implicit Object 144

Exception Implicit Object 145

www.enosislearning.com

Advance JAVA Tutorials

4

Application Implicit Object 146

PageContext Implicit Object 147

JSP Directive Elements 148

Page Directive 149

Attributes of JSP page directive 149

Advantage of Include directive : Code Re-usability 150

www.enosislearning.com

Advance JAVA Tutorials

5

ADVANCE JAVA OVERVIEW
INTRODUCTION TO ADVANCED JAVA

Basically advanced java is divided into five main topics viz Multithreading, Collections, JDBC,

Servlet & JSP. Advanced Java is everything that goes beyond Core Java – most importantly the

APIs defined in Java Enterprise Edition, includes Servlet programming, Web Services, the

Persistence API, etc. It is a Web & Enterprise application development platform which basically

follows client & server architecture.

NEED FOR ADVANCE JAVA

Below are the few major advantages of Advance Java:

1. Advance Java i.e. JEE (Java Enterprise Edition) gives you the library to understand

the Client-Server architecture for Web Application Development which Core Java doesn’t

support.

2. J2EE is platform Independent, Java Centric environment for developing, building &

deploying Web-based applications online. It also consists of a set of services, APIs, and

protocols, which provides the functionality that is necessary for developing multi-tiered,

web-based applications.

3. You will be able to work with Web and Application Servers like Apache Tomcat, Glassfish

etc and understand the communication over HTTP protocol. But, in Core Java, it is not

possible.

4. There are a lot of Advance Java frameworks like Spring, JSF, Struts etc. which enable

you to develop a secure transaction based web apps for the domains like E-Commerce,

Banking, Legal, Financial, Healthcare, Inventory etc.

5. To work and understand the hot technologies like Hadoop and Cloud services, you should

be prepared with core and advanced Java concepts.

https://www.edureka.co/blog/java-tutorial/
https://www.edureka.co/blog/spring-tutorial/
https://www.edureka.co/blog/hadoop-tutorial/

www.enosislearning.com

Advance JAVA Tutorials

6

CHAPTER 1: MULTITHREADING
INTRODUCTION TO MULTITHREADING

A program can be divided into a number of small processes. Each small process can be

addressed as a single thread (a lightweight process). Multithreaded programs contain two or

more threads that can run concurrently. This means that a single program can perform two or

more tasks simultaneously.

 For example, one thread is writing content on a file at the same time another thread is

performing spelling check.

WHAT IS THREAD IN JAVA

A thread is a lightweight subprocess, the smallest unit of processing. It is a separate path of
execution.

Threads are independent. If there occurs exception in one thread, it doesn't affect other threads.
It uses a shared memory area.

As shown in the above figure, a thread is executed inside the process. There is context-

switching between the threads. There can be multiple processes inside the OS, and one process

can have multiple threads.

https://www.javatpoint.com/os-tutorial

www.enosislearning.com

Advance JAVA Tutorials

7

In Java, the word thread means two different things.

 An instance of Thread class.

 or, A thread of execution.

An instance of Thread class is just an object, like any other object in java. But a thread of

execution means an individual "lightweight" process that has its own call stack. In java each

thread has its own call stack.

The execution of multithreading in stack is as shown in above figure.

THE MAIN THREAD

Even if you don't create any thread in your program, a thread called main thread is still created
automatically. Although the main thread is automatically created, you can control it by
obtaining a reference to it by calling currentThread() method.

Note :Two important things to know about main thread are,

 It is the thread from which other threads will be produced.
 main thread must be always the last thread to finish execution.

Example:

class MainThread

{

 public static void main(String[] args)

 {

 Thread t=Thread.currentThread();

 t.setName("MainThread");

 System.out.println("Name of thread is "+t);

 }

}

www.enosislearning.com

Advance JAVA Tutorials

8

LIFE CYCLE OF A THREAD

Above figure gives the propogation of any thread from its generation till termination with

different methods.

1. New: A thread begins its life cycle in the new state. It remains in this state until the start()
method is called on it.

2. Runable: After invocation of start () method on new thread, the thread becomes runable.
3. Running: A method is in running thread if the thread scheduler has selected it.
4. Waiting: A thread is waiting for another thread to perform a task. In this stage the thread is

still alive.
5. Terminated: A thread enter the terminated state when it complete its task.

THREAD CLASS

Thread class is the main class on which Java's Multithreading system is based. Thread class,
along with its companion interface Runnable will be used to create and run threads for utilizing
Multithreading feature of Java.

Constructors of Thread class

1. Thread ()

www.enosislearning.com

Advance JAVA Tutorials

9

2. Thread (String str)
3. Thread (Runnable r)
4. Thread (Runnable r, String str)

You can create new thread by any one of the following method:

1. By implementing Runnable interface.
2. By extending Thread class

THREAD METHODS

Method Description

setName() to give thread a name

getName() return thread's name

getPriority() return thread's priority

setPriority() Sets threads priority

isAlive() checks if thread is still running or not

join() Wait for a thread to end

run() Entry point for a thread

sleep() suspend thread for a specified time

start() start a thread by calling run() method

THREAD PRIORITIES

Every thread has a priority that helps the operating system determine the order in which
threads are scheduled for execution. In java thread priority ranges between,

 MIN-PRIORITY (a constant of 1)
 MAX-PRIORITY (a constant of 10)

www.enosislearning.com

Advance JAVA Tutorials

10

By default every thread is given a NORM-PRIORITY(5). The main thread always have NORM-
PRIORITY.

We can get and set the priority of any thread with the help of getpriority and setPriority
methods of thread.

Important Note:

1. When we extend Thread class, we cannot override setName () and getName () functions,
because they are declared final in Thread class.

2. While using sleep (), always handle the exception it throws.

Static void sleep (long milliseconds) throws InterruptedException

HOW TO CREATE A THREAD

1. IMPLEMENTING THE RUNNABLE INTERFACE

 The easiest way to create a thread is to create a class that implements the runnable interface.
After implementing runnable interface , the class needs to implement the run() method, which
is of form,

public void run() method:

 run() method introduces a concurrent thread into your program. This thread will end when
run() returns.

 You must specify the code for your thread inside run() method.
 run() method can call other methods, can use other classes and declare variables just like

any other normal method.

Example:

class MyThread implements Runnable

{

 public void run()

 {

 System.out.println("concurrent thread started running..");

 }}

class MyThreadDemo

{

 public static void main(String args[])

www.enosislearning.com

Advance JAVA Tutorials

11

 {

 MyThread mt = new MyThread();

 Thread t = new Thread(mt);

t.start();

 }

}

In above program, To call the run() method, start() method is used. On calling start(), a new
stack is provided to the thread and run() method is called to introduce the new thread into the
program.

2. EXTENDING THREAD CLASS

This is another way to create a thread by a new class that extends Thread class and create an
instance of that class. The extending class must override run() method which is the entry point
of new thread.

Example:

class MyThread extends Thread

{

 public void run()

 {

 System.out.println("Concurrent thread started running..");

 }

}

classMyThreadDemo

{

 public static void main(String args[])

 {

 MyThread mt = new MyThread();

mt.start();

 }

}

www.enosislearning.com

Advance JAVA Tutorials

12

In this case also, as we must override the run() and then use the start() method to start and run
the thread. Also, when you create MyThread class object, Thread class constructor will also be
invoked, as it is the super class, hence MyThread class object acts as Thread class object.

What if we call run() method directly without using start() method ?

In above program if we directly call run() method, without using start() method, like this

public static void main(String args[])

{

 MyThread mt = new MyThread();

mt.run();

}

Doing so, the thread won't be allocated a new call stack, and it will start running in the current c
all stack, that is the call stack of the main thread. Hence Multithreading won't be there.

Above figure shows the actual existance of newly generated thread. If we call run method then
new thread will not get any stack location.

Can we Start a thread twice ?

No, a thread cannot be started twice. If you try to do so, IllegalThreadStateException will be
thrown.

Example:

public static void main(String args[])

{

 MyThread mt = new MyThread();

mt.start();

www.enosislearning.com

Advance JAVA Tutorials

13

mt.start(); //Exception thrown

}

When a thread is in running state, and you try to start it again, or any method try to invoke that
thread again using start() method, exception is thrown.

JOINING THREADS

Sometimes one thread needs to know when another thread is ending. In
java, isAlive() and join() are two different methods to check whether a thread has finished its
execution.

The isAlive() method returns true if the thread upon which it is called is still running otherwise
it returns false.

final boolean isAlive()

Example of isAlive method:

public class MyThread extends Thread

{

 public void run()

 {

 System.out.println("r1 ");

 try {

 Thread.sleep(500);

 }

 catch(InterruptedException ie) { }

 System.out.println("r2 ");

 }

 public static void main(String[] args)

 {

 MyThread t1=new MyThread();

 MyThread t2=new MyThread();

 t1.start();

 t2.start();

 System.out.println(t1.isAlive());

www.enosislearning.com

Advance JAVA Tutorials

14

 System.out.println(t2.isAlive());

 }

}

But, join() method is used more commonly than isAlive(). This method waits until the thread on
which it is called terminates.

final void join() throws InterruptedException

Using join() method, we tell our thread to wait until the specified thread completes its
execution. There are overloaded versions of join() method, which allows us to specify time for
which you want to wait for the specified thread to terminate.

final void join(long milliseconds) throws InterruptedException

Example of thread without join() method:

public class MyThread extends Thread

{

 public void run()

 {

 System.out.println("r1 ");

 try {

 Thread.sleep(500);

 }catch(InterruptedException ie){ }

 System.out.println("r2 ");

 }

 public static void main(String[] args)

 {

 MyThread t1=new MyThread();

 MyThread t2=new MyThread();

 t1.start();

 t2.start();

 }}

www.enosislearning.com

Advance JAVA Tutorials

15

In this above program two thread t1 and t2 are created. t1 starts first and after printing "r1" on
console thread t1 goes to sleep for 500 ms. At the same time Thread t2 will start its process and
print "r1" on console and then go into sleep for 500 ms. Thread t1 will wake up from sleep and
print "r2" on console similarly thread t2 will wake up from sleep and print "r2" on console. So
you will get output like r1 r1 r2 r2

Example of thread with join() method:

public class MyThread extends Thread

{

 public void run()

 {

 System.out.println("r1 ");

 try {

 Thread.sleep(500);

 }catch(InterruptedException ie){ }

 System.out.println("r2 ");

 }

 public static void main(String[] args)

 {

 MyThread t1=new MyThread();

 MyThread t2=new MyThread();

 t1.start();

 try{

 t1.join(); //Waiting for t1 to finish

 }catch(InterruptedException ie){}

 t2.start();

 }

}

In this above program join() method on thread t1 ensures that t1 finishes it process before
thread t2 starts.

Specifying time with join()

www.enosislearning.com

Advance JAVA Tutorials

16

If in the above program, we specify time while using join() with t1, then t1 will execute for that
time, and then t2 will join it.

t1.join(1500);

Doing so, initially t1 will execute for 1.5 seconds, after which t2 will join it.

CONCEPT OF SYNCHRONIZATION

At times when more than one thread try to access a shared resource, we need to ensure that
resource will be used by only one thread at a time. The process by which this is achieved is
called synchronization. The synchronization keyword in java creates a block of code referred to
as critical section.

Every Java object with a critical section of code gets a lock associated with the object. To enter
critical section a thread need to obtain the corresponding object's lock.

General Syntax :

synchronized (object)

{

//statement to be synchronized

}

Why we use Syncronization ?

If we do not use syncronization, and let two or more threads access a shared resource at the
same time, it will lead to distorted results.

Scenario without synchronization:-

 Suppose we have two different threads T1 and T2, T1 starts execution and save certain values
in a file temporary.txt which will be used to calculate some result when T1 returns. Meanwhile,
T2 starts and before T1 returns, T2 change the values saved by T1 in the file temporary.txt
(temporary.txt is the shared resource). Now obviously T1 will return wrong result.

Solution to above problem:-

To prevent such problems, synchronization was introduced. With synchronization in above
case, once T1 starts using temporary.txt file, this file will be locked(LOCK mode), and no other
thread will be able to access or modify it until T1 returns.

Using Synchronized Methods

Using Synchronized methods is a way to accomplish synchronization. But lets first see what
happens when we do not use synchronization in our program.

Example with no Synchronization:

www.enosislearning.com

Advance JAVA Tutorials

17

class First

{

 public void display(String msg)

 {

 System.out.print ("["+msg);

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

 e.printStackTrace();

 }

 System.out.println ("]");

 }

}

class Second extends Thread

{

 String msg;

 First fobj;

 Second (First fp,String str)

 {

 fobj = fp;

 msg = str;

 start();

 }

 public void run()

 {

 fobj.display(msg);

 }

}

www.enosislearning.com

Advance JAVA Tutorials

18

public class Syncro

{

 public static void main (String[] args)

 {

First fnew = new First();

 Second ss = new second(fnew, "welcome");

 Second ss1= new second (fnew,"new");

 Second ss2 = new second(fnew, "programmer");

 }

}

In the above program, object fnew of class First is shared by all the three running threads(ss, ss
1 and ss2) to call the shared method(void display). Hence the result is unsynchronized and such
situation is called Race condition.

Synchronized Keyword

To synchronize above program, we must serialize access to the shared display() method,
making it available to only one thread at a time. This is done by using
keyword synchronized with display() method.

Synchronized void display (String msg)

Using Synchronised block

If you have to synchronize access to object of a class that has no synchronized methods, and
you cannot modify the code. You can use synchronized block to use it.

class First

{

 public void display(String msg)

 {

 System.out.print ("["+msg);

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

www.enosislearning.com

Advance JAVA Tutorials

19

 e.printStackTrace();

 }

 System.out.println ("]");

 }

}

class Second extends Thread

{

 String msg;

 First fobj;

 Second (First fp,String str)

 {

 fobj = fp;

 msg = str;

 start();

 }

 public void run()

 {

synchronized(fobj) //Synchronized block

 {

fobj.display(msg);

 }

 }

}

public class Syncro

{

 public static void main (String[] args)

 {

 First fnew = new First();

 Second ss = new second(fnew, "welcome");

 Second ss1= new second (fnew,"new");

 Second ss2 = new second(fnew, "programmer");

www.enosislearning.com

Advance JAVA Tutorials

20

 }

}

Because of synchronized block this program gives the expected output.

INTERTHREAD COMMUNICATION

Java provide benefit of avoiding thread pooling using interthread communication.
The wait(), notify(), notifyAll() of Object class. These method are implemented as final in
Object. All three method can be called only from within a synchronized context.

 wait() tells calling thread to give up monitor and go to sleep until some other thread enters
the same monitor and call notify.

 notify() wakes up a thread that called wait() on same object.

 notifyAll() wakes up all the thread that called wait() on same object.

Difference between wait() and sleep()

wait() sleep()

called from synchronised block no such requirement

monitor is released monitor is not released

awake when notify() or notifyAll() method
is called.

not awake when notify() or notifyAll() method is
called

not a static method static method

wait() is generaly used on condition sleep() method is simply used to put your thread
on sleep.

www.enosislearning.com

Advance JAVA Tutorials

21

Chapter 2: Collection Framework

INTRODUCTION TO COLLECTION FRAMEWORK

Collections framework was not introduced in earlier Core Java part. A collection was added to

J2SE 1.2. Prior to Java 2, Java provided adhoc classes such as Dictionary, Vector, Stack and

Properties to store and manipulate groups of objects.

Framework in java is nothing but hierarchy of classes and interfaces. For Collection framework

you need to import java.util package. It provides many important classes and interfaces to collect

and organize group of alike objects those are introduced in collection framework.

Following table describes the main interfaces or techniques used to store group of objects in collection framework.

Interface Description

Collection Enables you to work with groups of object; it is at the top of Collection hierarchy

Deque Extends Queue to handle double ended queue.

List Extends Collection to handle sequences list of object.

Queue Extends Collection to handle special kind of list in which element are removed only from the head.

Set Extends Collection to handle sets, which must contain unique element.

SortedSet Extends Set to handle sorted set.

Following figure gives the precise idea about collection framework interfaces & classes.

www.enosislearning.com

Advance JAVA Tutorials

22

THE COLLECTION INTERFACE

1. It is at the top of collection heirarchy and must be implemented by any class that defines a

collection. Its general declaration is,

interfaceCollection< E >

2. Following are some of the commonly used methods in this interface.

Methods Description

boolean add(E obj) Used to add objects to a collection. Returns

true if obj was added to the collection.

www.enosislearning.com

Advance JAVA Tutorials

23

Returns false if obj is already a member of

the collection, or if the collection does not

allow duplicates.

booleanaddAll(Collection C) Add all elements of collection C to the

invoking collection. Returns true if the

element were added. Otherwise, returns

false.

boolean remove(Object obj) To remove an object from collection.

Returns true if the element was removed.

Otherwise, returns false.

booleanremoveAll(Collection C) Removes all element of collection C from

the invoking collection. Returns true if the

collection's elements were removed.

Otherwise, returns false.

boolean contains(Object obj) To determine whether an object is present in

collection or not. Returns true if obj is an

element of the invoking collection.

Otherwise, returns false.

booleanisEmpty() Returns true if collection is empty, else

returns false.

int size() Returns number of elements present in

collection.

void clear() Removes total number of elements from the

collection.

Object[] toArray() Returns an array which consists of the

invoking collection elements.

www.enosislearning.com

Advance JAVA Tutorials

24

booleanretainAll(Collection c) Deletes all the elements of invoking

collection except the specified collection.

Iterator iterator() Returns an iterator for the invoking

collection.

boolean equals(Object obj) Returns true if the invoking collection and

obj are equal. Otherwise, returns false.

Object[] toArray(Object array[]) Returns an array containing only those

collection elements whose type matches of

the specified array.

THE LIST INTERFACE

Properties of List Interface:

1. It extends the Collection Interface, and defines storage as sequence of elements. Following is

its general declaration,

interfaceList< E >

2. Allows random access and insertion, based on position.

3. It allows Duplicate elements.

4. Apart from methods of Collection Interface, it adds following methods of its own.

Following table shows methods used in List interface.

Methods Description

Object get(int index) Returns object stored at the specified index

www.enosislearning.com

Advance JAVA Tutorials

25

Object set(int index, E obj) Stores object at the specified index in the calling

collection

intindexOf(Object obj) Returns index of first occurrence of obj in the

collection

intlastIndexOf(Object obj) Returns index of last occurrence of obj in the

collection

List subList(int start, int end) Returns a list containing elements between start

and end index in the collection

THE SET INTERFACE

Properties of Set Interface:

1. This interface defines a Set. It extends Collection interface and doesn't allow insertion of

duplicate elements. It's general declaration is,

interfaceSet< E >

2. It doesn't define any method of its own. It has two sub

interfaces, SortedSet and NavigableSet.

3. SortedSet interface extends Set interface and arranges added elements in an ascending order.

4. NavigabeSet interface extends SortedSet interface, and allows retrieval of elements based on

the closest match to a given value or values.

THE QUEUE INTERFACE

Properties of Queue Interface:

1. It extends collection interface and defines behavior of queue, that is first-in, first-out. It's

general declaration is,

interfaceQueue< E >

www.enosislearning.com

Advance JAVA Tutorials

26

2. There are couple of new and interesting methods added by this interface. Some of them are

mentioned in below table.

Methods Description

Object pull() removes element at the head of the queue and

returns null if queue is empty

Object remove() removes element at the head of the queue and

throws NoSuchElementException if queue is empty

Object peek() returns the element at the head of the queue without

removing it. Returns null if queue is empty

Object element() same as peek(), but

throws NoSuchElementException if queue is empty

boolean offer(E obj) Adds object to queue.

THE DEQUEUE INTERFACE

1. It extends Queue interface and implements behaviour of a double-ended queue. Its general

declaration is,

interfaceDequeue< E >

2. Since it implements Queue interface, it has the same methods as mentioned there.

3. Double ended queues can function as simple queues as well as like standard Stacks.

THE COLLECTION CLASSES

www.enosislearning.com

Advance JAVA Tutorials

27

There are some standard classes that implements Collection interface. Some of the classes

provide full implementations that can be used as it is. Others are abstract classes, which provide

skeletal implementations that can be used as a starting point for creating concrete collections.

The standard collection classes are:

Class Description

AbstractCollection Implements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of the List interface.

AbstractQueue Extends AbstractCollection and implements parts of the Queue interface.

AbstractSequentialList
Extends AbstractList for use by a collection that uses sequential rather

than random access of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList

ArrayList Implements a dynamic array by extending AbstractList

ArrayDeque

Implements a dynamic double-ended queue by extending

AbstractCollection and implementing the Deque interface(Added by Java

SE 6).

AbstractSet Extends AbstractCollection and implements most of the Set interface.

EnumSet Extends AbstractSet for use with enum elements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

PriorityQueue Extends AbstractQueue to support a priority-based queue.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

IMPORTANT NOTE:

www.enosislearning.com

Advance JAVA Tutorials

28

1. To use any Collection class in your program, you need to import it in your program. It is

contained inside java.util package.

2. Whenever you print any Collection class, it gets printed inside the square brackets [].

1. ARRAYLIST CLASS

Simple arrays have fixed size i.e it can store fixed number of elements. But, sometimes you may

not know beforehand about the number of elements that you are going to store in your array. In

such situations, We can use an ArrayList, which is an array whose size can increase or decrease

dynamically.

Following figure shows hierarchy of ArrayList class:-

Following are the properties of array-list class:-

1. ArrayList class extends AbstractList class and implements the List interface.

2. ArrayList supports dynamic array that can grow as needed. ArrayList has three constructors.

3. ArrayList() //It creates an empty ArrayList

4. ArrayList(Collection C) //It creates an ArrayList that is initialized with elements of the Coll

ection C

www.enosislearning.com

Advance JAVA Tutorials

29

5. ArrayList(intcapacity) //It creates an ArrayList that has the specified initial capacity

6. ArrayLists are created with an initial size. When this size is exceeded, the size of the

ArrayList increases automatically.

7. It can contain Duplicate elements and it also maintains the insertion order.

8. Manipulation is slow because a lot of shifting needs to be occurred if any element is removed

from the array list.

9. ArrayLists are not synchronized.

10. ArrayList allows random access because it works on the index basis.

Syntax:

ArrayList< datatype>object =new ArrayList< datatype>();

EXAMPLE OF ARRAYLIST

import java.util.*

classTest

{

publicstaticvoidmain(String[]args)

{

ArrayList< String> al =newArrayList< String>();

al.add("ab");

al.add("bc");

al.add("cd");

system.out.println(al);

}

}

GETTING ARRAY FROM AN ARRAYLIST

toArray() method is used to get an array containing all the contents of the ArrayList. Following are

some reasons for why you can need to obtain an array from your ArrayList:

 To obtain faster processing for certain operations.

 To pass an array to methods which do not accept Collection as arguments.

 To integrate and use collections with legacy code.

www.enosislearning.com

Advance JAVA Tutorials

30

STORING USER-DEFINED CLASSES

In the above mentioned example we are storing only string object in ArrayList collection. But

You can store any type of object, including object of class that you create in Collection classes.

EXAMPLE OF STORING USER-DEFINED OBJECT

Contact class

classContact

{

 String first_name;

 String last_name;

 String phone_no;

Public Contact(String fn,Stringln,Stringpn)

{

first_name=fn;

last_name= ln;

phone_no=pn;

}

public String toString()

{

returnfirst_name+" "+last_name+"("+phone_no+")";

}

}

Storing Contact class

Public class PhoneBook

{

Public static void main(String[]args)

{

 Contact c1 =newContact("Ricky","Pointing","999100091");

 Contact c2 =newContact("David","Beckham","998392819");

 Contact c3 =newContact("Virat","Kohli","998131319");

www.enosislearning.com

Advance JAVA Tutorials

31

ArrayList< Contact> al =newArrayList< Contact>();

al.add(c1);

al.add(c2);

al.add(c3);

System.out.println(al);

}

}

2. LINKEDLIST CLASS

FOLLOWING FIGURE SHOWS HIERARCHY OF LINKEDLIST CLASS:

Following are the properties of array-list class:-

1. LinkedList class extends AbstractSequentialList and

implements List,Deque and Queueinteface.

2. LinkedList has two constructors.

3. LinkedList()//It creates an empty LinkedList

LinkedList(Collection C)//It creates a LinkedList that is initialized with elements of the

Collection c

www.enosislearning.com

Advance JAVA Tutorials

32

4. It can be used as List, stack or Queue as it implements all the related interfaces.

5. They are dynamic in nature i.e it allocates memory when required. Therefore insertion and

deletion operations can be easily implemented.

6. It can contain duplicate elements and it is not synchronized.

7. Reverse Traversing is difficult in linked list.

8. In LinkedList, manipulation is fast because no shifting needs to be occurred.

EXAMPLE OF LINKEDLIST CLASS

import java.util.* ;

classTest

{

publicstaticvoidmain(String[]args)

{

LinkedList< String>ll=newLinkedList< String>();

ll.add("a");

ll.add("b");

ll.add("c");

ll.addLast("z");

ll.addFirst("A");

System.out.println(ll);

}

}

DIFFERENCE BETWEEN ARRAYLIST AND LINKED LIST

ArrayList and LinkedList are the Collection classes, and both of them implements the List

interface. The ArrayList class creates the list which is internally stored in a dynamic array that

grows or shrinks in size as the elements are added or deleted from it. LinkedList also creates the

list which is internally stored in a DoublyLinked List. Both the classes are used to store the

elements in the list, but the major difference between both the classes is that ArrayList allows

random access to the elements in the list as it operates on an index-based data structure. On the

other hand, the LinkedList does not allow random access as it does not have indexes to access

elements directly, it has to traverse the list to retrieve or access an element from the list.

ArrayList Linkedlist

ArrayList internally uses a dynamic array to

store the elements.

LinkedList internally uses a doubly linked

list to store the elements.

www.enosislearning.com

Advance JAVA Tutorials

33

Manipulation with ArrayList is slow because

it internally uses an array. If any element is

removed from the array, all the bits are

shifted in memory.

Manipulation with LinkedList is faster than

ArrayList because it uses a doubly linked list,

so no bit shifting is required in memory.

An ArrayList class can act as a list only

because it implements List only.

LinkedList class can act as a list and

queue both because it implements List and

Deque interfaces.

ArrayList is better for storing and

accessing data.

LinkedList is better for

manipulating data.

 ArrayList extends AbstarctList class whereas LinkedList extends AbstractSequentialList.

 AbstractList implements List interface, thus it can behave as a list only whereas LinkedList

implements List, Deque and Queue interface, thus it can behave as a Queue and List both.

 In a list, access to elements is faster in ArrayList as random access is also possible. Access to

LinkedList elements is slower as it follows sequential access only.

3. HASHSET CLASS

1. HashSet extends AbstractSet class and implements the Set interface.

2. HashSet has three constructors.

www.enosislearning.com

Advance JAVA Tutorials

34

3. HashSet()//This creates an empty HashSet

4. HashSet(Collection C)//This creates a HashSet that is initialized with the elements of the

Collection C

5. HashSet(int capacity)//This creates a HashSet that has the specified initial capacity

1. It creates a collection that uses hash table for storage. A hash table stores information by

using a mechanism called hashing.

2. In hashing, the informational content of a key is used to determine a unique value, called its

hash code. The hash code is then used as the index at which the data associated with the key

is stored.

3. HashSet does not maintain any order of elements.

4. HashSet contains only unique elements.

EXAMPLE OF HASHSET CLASS

importjava.util.*;

classHashSetDemo

{

publicstaticvoidmain(String args[])

{

HashSet< String>hs=newHashSet< String>();

hs.add("B");

hs.add("A");

hs.add("D");

hs.add("E");

hs.add("C");

hs.add("F");

System.out.println(hs);

} }

4. LINKEDHASHSET CLASS

1. LinkedHashSet class extends HashSet class

2. LinkedHashSet maintains a linked list of entries in the set.

www.enosislearning.com

Advance JAVA Tutorials

35

3. LinkedHashSet stores elements in the order in which elements are inserted i.e it maintains the

insertion order.

EXAMPLE OF LINKEDHASHSET CLASS

importjava.util.*;

classLinkedHashSetDemo

{

publicstaticvoidmain(String args[])

{

LinkedHashSet< String>hs=newLinkedHashSet< String>();

hs.add("B");

hs.add("A");

hs.add("D");

hs.add("E");

hs.add("C");

hs.add("F");

System.out.println(hs);

}

}

5. TREESET CLASS

FOLLOWING FIGURE SHOWS HIERARCHY OF TREE-SET CLASS:-

www.enosislearning.com

Advance JAVA Tutorials

36

FOLLOWING ARE THE PROPERTIES OF TREESET:-

1. It extends AbstractSet class and implements the NavigableSet interface.

2. It stores the elements in ascending order.

3. It uses a Tree structure to store elements.

4. It contains unique elements only like HashSet.

5. It's access and retrieval times are quite fast.

6. It has four Constructors.

EXAMPLE OF TREESET CLASS

importjava.util.*;

classTestCollection11{

publicstaticvoidmain(String args[]){

TreeSet<String> al=newTreeSet<String>();

al.add("Ravi");

al.add("Vijay");

al.add("Ravi");

al.add("Ajay");

 Iterator itr=al.iterator();

www.enosislearning.com

Advance JAVA Tutorials

37

while(itr.hasNext()){

System.out.println(itr.next());

}}}

6. PRIORITYQUEUE CLASS

FOLLOWING FIGURE SHOWS HIERARCHY OF TREE-SET CLASS:-

FOLLOWING ARE THE PROPERTIES OF PRIORITYQUEUE:-

1. It extends the AbstractQueue class.

2. The PriorityQueue class provides the facility of using queue.

3. It does not orders the elements in FIFO manner.

4. PriorityQueue has six constructors. In all cases, the capacity grows automatically as elements

are added.

5. PriorityQueue()//This constructor creates an empty queue. By default, its starting capacity is

11

6. PriorityQueue(int capacity)//This constructor creates a queue that has the specified initial

capacity

7. PriorityQueue(int capacity, Comparator comp)//This constructor creates a queue with the

specified capacityand comparator

8. //The last three constructors create queues that are initialized with elements of Collection

passed in c

www.enosislearning.com

Advance JAVA Tutorials

38

9. PriorityQueue(Collection c)

10. PriorityQueue(PriorityQueue c)

11. PriorityQueue(SortedSet c)

Note: If no comparator is specified when a PriorityQueue is constructed, then the default

comparator for the type of data stored in the queue is used. The default comparator will order the

queue in ascending order. Thus, the head of the queue will be the smallest value. However, by

providing a custom comparator, you can specify a different ordering scheme.

Note: Although you can iterate through a PriorityQueue using an iterator, the order of that

iteration is undefined. To properly use a PriorityQueue, you must call methods such as offer()

and poll(), which are defined by the Queue interface.

EXAMPLE OF PRIORITYQUEUE CLASS

importjava.util.*;

classStudyTonight

{

publicstaticvoidmain(String args[])

{

PriorityQueue<String> queue=newPriorityQueue<String>();

queue.add("WE");

queue.add("LOVE");

queue.add("STUDY");

queue.add("TONIGHT");

System.out.println("At head of the queue:"+queue.element());

System.out.println("At head of the queue:"+queue.peek());

System.out.println("Iterating the queue elements:");

 Iterator itr=queue.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

queue.remove();

queue.poll();

System.out.println("After removing two elements:");

 Iterator itr2=queue.iterator();

while(itr2.hasNext()){

www.enosislearning.com

Advance JAVA Tutorials

39

System.out.println(itr2.next());

}}}

WAYS TO TRAVERSING A COLLECTION

To access, modify or remove any element from any collection we need to first find the element,

for which we have to cycle through the elements of the collection. There are three possible ways

to cycle through the elements of any collection.

1. Using Iterator interface

2. Using ListIterator interface

3. Using for-each loop

STEPS TO USE AN ITERATOR

1. Obtain an iterator to the start of the collection by calling the collection's iterator() method.

2. Set up a loop that makes a call to hasNext() method. Make the loop iterate as long

as hasNext()method returns true.

3. Within the loop, obtain each element by calling next() method.

ACCESSING ELEMENTS USING ITERATOR

Iterator Interface is used to traverse a list in forward direction, enabling you to remove or modify

the elements of the collection. Each collection classes provide iterator() method to return an

iterator.

Methods of Iterator:

Method Description

boolean hasNext() Returns true if there are more elements in the collection. Otherwise, returns

false.

E next() Returns the next element present in the collection. Throws

NoSuchElementException if there is not a next element.

www.enosislearning.com

Advance JAVA Tutorials

40

void remove() Removes the current element. Throws IllegalStateException if an attempt is

made to call remove() method that is not preceded by a call to next() method.

Example

importjava.util.*;

classTest_Iterator

{

publicstaticvoidmain(String[]args)

{

ArrayList< String>ar=newArrayList< String>();

ar.add("ab");

ar.add("bc");

ar.add("cd");

ar.add("de");

 Iterator it =ar.iterator();//Declaring Iterator

while(it.hasNext())

{

System.out.print(it.next()+" ");

}

}

}

ACCESSING ELEMENTS USING LISTITERATOR

ListIterator Interface is used to traverse a list in both forward and backward direction. It is

available to only those collections that implements the List Interface.

Methods of ListIterator:

Method Description

www.enosislearning.com

Advance JAVA Tutorials

41

void add(E obj) Inserts obj into the list in front of the element that will be returned by the

next call to next() method.

boolean hasNext() Returns true if there is a next element. Otherwise, returns false.

boolean hasPrevious() Returns true if there is a previous element. Otherwise, returns false.

E next() Returns the next element. A NoSuchElementException is thrown if there is

not a next element.

int nextIndex() Returns the index of the next element. If there is not a next element, returns

the size of the list.

E previous() Returns the previous element. A NoSuchElementException is thrown if there

is not a previous element.

int previousIndex() Returns the index of the previous element. If there is not a previous element,

returns -1.

void remove() Removes the current element from the list. An IllegalStateException is

thrown if remove() method is called before next() or previous() method is

invoked.

void set(E obj) Assigns obj to the current element. This is the element last returned by a call

to either next() or previous() method.

Example:

importjava.util.*;

www.enosislearning.com

Advance JAVA Tutorials

42

classTest_Iterator

{

publicstaticvoidmain(String[]args)

{

ArrayList< String>ar=newArrayList< String>();

ar.add("ab");

ar.add("bc");

ar.add("cd");

ar.add("de");

ListIteratorlitr=ar.listIterator();

while(litr.hasNext())//In forward direction

{

System.out.print(litr.next()+" ");

}

while(litr.hasPrevious())//In backward direction

{

System.out.print(litr.previous()+" ");

}

}

}

USING FOR-EACH LOOP

for-each version of for loop can also be used for traversing the elements of a collection. But this

can only be used if we don't want to modify the contents of a collection and we don't want

any reverseaccess. for-each loop can cycle through any collection of object that

implements Iterableinterface.

importjava.util.*;

classForEachDemo

{

publicstaticvoidmain(String[]args)

{

LinkedList< String> ls =newLinkedList< String>();

ls.add("a");

www.enosislearning.com

Advance JAVA Tutorials

43

ls.add("b");

ls.add("c");

ls.add("d");

for(String str: ls)

{

System.out.print(str+" ");}}}

Map Interface

A Map stores data in key and value association. Both key and values are objects. The key must

be unique but the values can be duplicate. Although Maps are a part of Collection Framework,

they can not actually be called as collections because of some properties that they posses.

However we can obtain a collection-view of maps.

Interface Description

Map Maps unique key to value.

Map.Entry Describe an element in key and value pair in a map. Entry

is sub interface of Map.

www.enosislearning.com

Advance JAVA Tutorials

44

NavigableMap Extends SortedMap to handle the retrienal of entries based

on closest match searches

SortedMap Extends Map so that key are maintained in an ascending

order.

COMMONLY USED METHODS DEFINED BY MAP

 boolean containsKey(Object k): returns true if map contain k as key. Otherwise false.

 Object get(Object k) : returns values associated with the key k.

 Object put(Object k, Object v) : stores an entry in map.

 Object putAll(Map m) : put all entries from m in this map.

 Set keySet() : returns Set that contains the key in a map.

 Set entrySet() : returns Set that contains the entries in a map.

1. HASHMAP CLASS

www.enosislearning.com

Advance JAVA Tutorials

45

Following figure shows hierarchy of HashMap:

Following are the properties of HashMap Class:

1. HashMap class extends AbstractMap and implements Map interface.

2. It uses a hashtable to store the map. This allows the execution time of get() and put() to

remain same.

3. HashMap has four constructor.

4. HashMap()

5. HashMap(Map<?extendsk,?extendsV> m)

6. HashMap(int capacity)

7. HashMap(int capacity,floatfillratio)

8. HashMap does not maintain order of its element.

Example:

importjava.util.*;

classHashMapDemo

{

publicstaticvoidmain(String args[])

{

HashMap<String,Integer>hm=newHashMap<String,Integer>();

hm.put("a",newInteger(100));

hm.put("b",newInteger(200));

hm.put("c",newInteger(300));

www.enosislearning.com

Advance JAVA Tutorials

46

hm.put("d",newInteger(400));

 Set<Map.Entry<String,Integer>>st=hm.entrySet();//returns Set view

for(Map.Entry<String,Integer>me:st)

{

System.out.print(me.getKey()+":");

System.out.println(me.getValue());

}}}

2. TREEMAP CLASS

 Following figure shows hierarchy of TreeMap:

 Following are the properties of TreeMap Class:

1. TreeMap class extends AbstractMap and implements NavigableMap interface.

2. It creates Map, stored in a tree structure.

3. A TreeMap provides an efficient means of storing key/value pair in efficient order.

4. It provides key/value pairs in sorted order and allows rapid retrieval.

Example:

importjava.util.*;

classTreeMapDemo

{

www.enosislearning.com

Advance JAVA Tutorials

47

publicstaticvoidmain(String args[])

{

TreeMap<String,Integer> tm =newTreeMap<String,Integer>();

tm.put("a",newInteger(100));

tm.put("b",newInteger(200));

tm.put("c",newInteger(300));

tm.put("d",newInteger(400));

 Set<Map.Entry<String,Integer>>st=tm.entrySet();

for(Map.Entryme:st)

{

System.out.print(me.getKey()+":");

System.out.println(me.getValue());

}}}

3. LINKEDHASHMAP CLASS:

 Following figure shows hierarchy of LinkedHashMap:

www.enosislearning.com

Advance JAVA Tutorials

48

 Following are the properties of LinkedHashMap Class:

1. LinkedHashMap extends HashMap class.

2. It maintains a linked list of entries in map in order in which they are inserted.

3. LinkedHashMap defines the following constructor

4. LinkedHashMap()

5. LinkedHashMap(Map<?extendsk,?extendsV> m)

6. LinkedHashMap(int capacity)

7. LinkedHashMap(int capacity,floatfillratio)

8. LinkedHashMap(int capacity,floatfillratio,boolean order)

9. It adds one new method removeEldestEntry(). This method is called by put() and putAll() By

default this method does nothing. However we can override this method to remove oldest

element in the map. Syntax

protectedbooleanremoveEldestEntry(Map.Entry e)

COMPARATOR INTERFACE

In Java, Comparator interface is used to order(sort) the objects in the collection in your own way.

It gives you the ability to decide how elements will be sorted and stored within collection and

map.

Comparator Interface defines compare() method. This method has two parameters. This method

compares the two objects passed in the parameter. It returns 0 if two objects are equal. It returns

a positive value if object1 is greater than object2. Otherwise a negative value is returned. The

method can throw a ClassCastException if the type of object are not compatible for

comparison.

RULES FOR USING COMPARATOR INTERFACE

1. If you want to sort the elements of a collection, you need to implement Comparator interface.

2. If you do not specify the type of the object in your Comparator interface, then, by default, it

assumes that you are going to sort the objects of type Object. Thus, when you override the

compare() method ,you will need to specify the type of the parameter as Object only.

3. If you want to sort the user-defined type elements, then while implementing the Comparator

interface, you need to specify the user-defined type generically. If you do not specify the

www.enosislearning.com

Advance JAVA Tutorials

49

user-defined type while implementing the interface,then by default, it assumes Object type

and you will not be able to compare the user-defined type elements in the collection

For Example:

If you want to sort the elements according to roll number, defined inside the class Student, then

while implementing the Comparator interface, you need to mention it generically as follows:

classMyComparatorimplementsComparator<Student>{}

If you write only,classMyComparatorimplementsComparator{}

Then it assumes, by default, data type of the compare() method's parameter to be Object, and

hence you will not be able to compare the Student type(user-defined type) objects.

Student class

classStudent

int roll;

 String name;

Student(intr,String n)

{

 roll = r;

 name = n;

}

public String toString()

{

return roll+" "+name;

}

MyComparator class

This class defines the comparison logic for Student class based on their roll. Student object will

be sorted in ascending order of their roll.

classMyComparatorimplementsComparator<Student>

{

publicintcompare(Student s1,Student s2)

{

if(s1.roll == s2.roll)return0;

elseif(s1.roll > s2.roll)return1;

elsereturn-1;

www.enosislearning.com

Advance JAVA Tutorials

50

}

}

publicclassTest

{

publicstaticvoidmain(String[]args)

{

TreeSet< Student>ts=newTreeSet< Student>(newMyComparator());

ts.add(newStudent(45,"Rahul"));

ts.add(newStudent(11,"Adam"));

ts.add(newStudent(19,"Alex"));

System.out.println(ts);

}}

Note:

 When we are sorting elements in a collection using Comparator interface, we need to pass the

class object that implements Comparator interface.

 To sort a TreeSet collection, this object needs to be passed in the constructor of TreeSet.

 If any other collection, like ArrayList,was used, then we need to call sort method of

Collections class and pass the name of the collection and this object as a parameter.

 For example, If the above program used ArrayList collection, the public class test would be as

follows:

publicclassTest

{publicstaticvoidmain(String[]args){

ArrayList< Student>ts=newArrayList< Student>();

ts.add(newStudent(45,"Rahul"));

ts.add(newStudent(11,"Adam"));

ts.add(newStudent(19,"Alex"));

Collections.sort(ts,newMyComparator());/*passing the name of the ArrayList and the

object of the class that implements Comparator in a predefined sort() method in Collections

class*/

System.out.println(ts);

www.enosislearning.com

Advance JAVA Tutorials

51

} }

LEGACY CLASSES

Early version of java did not include the Collections framework. It only defined several classes

and interfaces that provide methods for storing objects. When Collections framework were added

in J2SE 1.2, the original classes were reengineered to support the collection interface. These

classes are also known as Legacy classes. All legacy classes and interface were redesign by JDK

5 to support Generics. In general, the legacy classes are supported because there is still some

code that uses them.

The following are the legacy classes defined by java.util package

1. Dictionary

2. HashTable

3. Properties

4. Stack

5. Vector

There is only one legacy interface called Enumeration

NOTE: All the legacy classes are synchronized

HASHTABLE CLASS

1. Like HashMap, Hashtable also stores key/value pair. However neither keys nor values can

be null.

2. There is one more difference between HashMap and Hashtable that is Hashtable is

synchronized while HashMap is not.

3. Hashtable has following four constructor

1. Hashtable()//This is the default constructor. The default size is 11.

2. Hashtable(int size)//This creates a hash table that has an initial size specified by

size.

3. Hashtable(int size,floatfillratio)//This creates a hash table that has an initial size

specified by sizeand a fill ratio specified by fillRatio. This ratio must be between

0.0 and 1.0, and it determines how fullthe hash table can be before it is resized

upward. Specifically, when the number of elements is greaterthan the capacity of

the hash table multiplied by its fill ratio, the hash table is expanded.If you do not

specify a fill ratio, then 0.75 is used.

4. Hashtable(Map<?extendsK,?extendsV> m)//This creates a hash table that is

initialized with theelements in m. The capacity of the hash table is set to twice the

number of elements in m.The default load factor of 0.75 is used.

www.enosislearning.com

Advance JAVA Tutorials

52

EXAMPLE OF HASHTABLE

importjava.util.*;

classHashTableDemo

{

publicstaticvoidmain(String args[])

{

Hashtable<String,Integer>ht=newHashtable<String,Integer>();

ht.put("a",newInteger(100));

ht.put("b",newInteger(200));

ht.put("c",newInteger(300));

ht.put("d",newInteger(400));

 Set st=ht.entrySet();

 Iterator itr=st.iterator();

while(itr.hasNext())

{

Map.Entry m=(Map.Entry)itr.next();

System.out.println(itr.getKey()+" "+itr.getValue());

}

}}

Difference between important collection classes:

DIFFERENCE BETWEEN ARRAYLIST AND LINKED LIST

ArrayList LinkedList

ArrayList uses a dynamic array. LinkedList uses a doubly linked list.

ArrayList is not efficient for

manipulation because too much

is required.

LinkedList is efficient for manipulation.

www.enosislearning.com

Advance JAVA Tutorials

53

ArrayList is better to store and

fetch data.

LinkedList is better to manipulate data.

ArrayList provides random

access.

LinkedList does not provide random

access.

ArrayList takes less memory

overhead as it stores only object

LinkedList takes more memory overhead,

as it stores the object as well as the address

of that object.

DIFFERENCE BETWEEN LIST AND LINKED SET

List Set

List is an ordered collection it

maintains the insertion order, which

means upon displaying the list content

it will display the elements in the same

order in which they got inserted into

the list.

Set is an unordered collection, it

doesn’t maintain any order. There are

few implementations of Set which

maintains the order such as

LinkedHashSet (It maintains the

elements in insertion order).

 List allows duplicates while Set

doesn’t allow duplicate elements.

All the elements of a Set should be

unique if you try to insert the duplicate

element in Set it would replace the

existing value.

 List

implementations: ArrayList, LinkedLi

st etc.

Set

implementations: HashSet, LinkedHas

hSet, TreeSet etc.

List allows any number of null values. Set can have only a single null value at

most.

DIFFERENCE BETWEEN HASHSET AND HASHMAP

https://beginnersbook.com/2013/12/java-arraylist/
https://beginnersbook.com/2013/12/linkedlist-in-java-with-example/
https://beginnersbook.com/2013/12/linkedlist-in-java-with-example/
https://beginnersbook.com/2013/12/hashset-class-in-java-with-example/
https://beginnersbook.com/2013/12/linkedhashset-class-in-java-with-example/
https://beginnersbook.com/2013/12/linkedhashset-class-in-java-with-example/
https://beginnersbook.com/2013/12/treeset-class-in-java-with-example/

www.enosislearning.com

Advance JAVA Tutorials

54

HashSet HashMap

HashSet class implements the Set interface
HashMap class implements the Map

interface

HashSet does not allow duplicate elements

that means you can not store duplicate

values in HashSet.

HashMap does not allow duplicate

keys however it allows to have

duplicate values.

HashSet permits to have a single null value.
HashMap permits single null key and

any number of null values.

DIFFERENCE BETWEEN HASHMAP AND HASHTABLE

Hashtable HashMap

Hashtable class is synchronized. HashMap is not synchronized.

Because of Thread-safe, Hashtable is

slower than HashMap

HashMap works faster.

Neither key nor values can be null Both key and values can be null

Order of table remain constant over

time.

does not guarantee that order of map will

remain constant over time.

www.enosislearning.com

Advance JAVA Tutorials

55

CHAPTER 3 JAVA JDBC
INTRODUCTION TO JDBC CONCEPT

JDBC (Java Database Connectivity) is uses for connect java application with database. It is Java
SE(Standard Edition) technology, which is install automatically with the JDK software. JDBC is an
API (Application programming interface) used to communicate Java application to database in
database independent and platform independent manner. It provides classes and interfaces to
connect or communicate Java application with database.

JDBC in Java

Jdbc ia an API (Application programming interface) used to communicate Java application to
database in database independent and platform independent manner. It provides classes and
interfaces to connect or communicate Java application with database.

Jdbc ia a part of JDK software so no need to install separate software for Jdbc API

Jdbc API consists of two packages

1. java.sql package
2. javax.sql package

What is JDBC?

www.enosislearning.com

Advance JAVA Tutorials

56

JDBC (Java Database Connectivity) is uses for connect java application with database. JDBC API
is a Java API that can access any kind of data stored in a Relational Database. It enables Java
programs to execute SQL statements. JDBC works with Java on a variety of platforms, such as
Windows, Mac OS, and the various versions of UNIX.

Before reading JDBC you need basic knowledge of Core java and most important some topics
are required like Abstract, Interface, Exception Handling, Collection Framework etc.

Why use JDBC?

In earlier days for communicate front end application to database, front-end application used a
set of function given by database vendor, to connect with a database.

But problem with the above communication is a front end application become as a database
dependent application because every database vendor give its own set of function for
communication.

To overcome the database dependent problem ODBC (Open database connectivity) community
formed by Microsoft with Simba technologies.

ODBC community has provided ODBC API, to connect with any database in a database
independent manner.

Why ODBC not use in Java Application ?

ODBC API is written in C language with pointer but Java application does not contain pointer so
internally non pointers java code is converted to C pointers code this conversion is a time-
consuming process so the connectivity is very slow.

Java application is platform independent but if it is combined with ODBC then it become
platform dependent but this is against of java motto or principal. To solved the above
problems, Sum MicroSystem introduced JDBC technology. Jdbc technology makes java
applications as platform independent and database independent.

www.enosislearning.com

Advance JAVA Tutorials

57

Difference between ODBC and JDBC

ODBC JDBC

Odbc is platform dependent and database

independent.

Jdbc is both platform and database

independent.

Odbc implemented in C language with

pointer

Jdbc implemented in java without pointer

Procedure to connect java with any database

www.enosislearning.com

Advance JAVA Tutorials

58

Above figure shows the steps included in connecting java application with any database.

 More precisely these are divided into following different steps:

1. Load the JDBC driver class or register the JDBC driver.

2. Establish the connection

3. Create a statement

4. Execute the sql commands on database and get the result

5. Print the result

6. Close the connection

1. Register the driver class

www.enosislearning.com

Advance JAVA Tutorials

59

In this step we load the JDBC driver class into JVM. This step is also called as registering the
JDBC driver. The forName() method of Class class is used to register the driver class. This
method is used to dynamically load the driver class. This step can be completed in two ways.

 class.forName("fully qualified classname")

 DriveManager.registerDriver(object of driver class)

Syntax of forName() method

publicstaticvoid forName(String className)throws ClassNotFoundException

Sun.Jdbc.Odbc.JdbcOdbcDriver is a driver class provided by Sun MicroSystem and it can be
loaded into jvm like the following.

Syntax

class.forName("Sun.Jdbc.Odbc.JdbcOdbcDriver");

Syntax

Sun.Jdbc.Odbc.JdbcOdbcDriver jod=new Sun.Jdbc.Odbc.JdbcOdbcDriver();

DriverManager.registerDriver(jod);

2. Create the connection object

In this step connection between a java program and a database will be opened. To
open the connection, we call getConnection() method of DriverManager class.
For getConnection() method we need to pass three parameters.

1. url

2. username

3. password

url: url is used to select one register JDBC driver among multiple registered driver by
DriverManager class.

username and password: username and password are used for authentication purpose.

Syntax of getConnection() method

www.enosislearning.com

Advance JAVA Tutorials

60

1) publicstatic Connection getConnection(String url)throws SQLException

2) publicstatic Connection getConnection(String url,String name,String password)

throws SQLException

Example to establish connection with the Oracle database

Connection con=new DriverManager.getConnection(url, username, password);

Example:

Connection con=new DriverManager.getConnection(Jdbc:Odbc:< dsn >", "scott","tiger");

3. Create the Statement object :

To transfer sql commands from java program to database we need statement object. To create a statement object
we call createStatement() method of connection interface.The object of statement is responsible to execute
queries with the database.

Syntax of createStatement() method

public Statement createStatement()throws SQLException

Example to create the statement object

Statement stmt=new createStatement();

4. Executing queries

Call any one of the following three methods of Statement interface is used to execute queries
to the database and to get the output.

 executeUpdate(): Used for non-select operations.

 executeQuery(): Used for select operation.

 execute(): Used for both select or non-select operation.

5. Print the result.

www.enosislearning.com

Advance JAVA Tutorials

61

System.out.println(output);

6.Closing connection : Close the connection.

By closing connection object statement and ResultSet will be closed automatically. The close()
method of Connection interface is used to close the connection.

Syntax of close() method

publicvoid close()throws SQLException

Example for close connection

con.close();

Example

import java.sql.*;

class CreateTable

{

publicstaticvoid main(String[] args) throws Exception

{

//step-1

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

System.out.println("driver is loaded");

//step-2

Connection con=DriverManager.getConnection("jdbc:odbc:ramadsn","system","system");

System.out.println("connection is established");

//step-3

Statement stmt=con.createStatement();

System.out.println("statement object is cretaed");

//step-4

www.enosislearning.com

Advance JAVA Tutorials

62

int i=stmt.executeUpdate("create table student(sid number(3),sname varchar2(10),marks
number(5))");

//step-5

System.out.println("Result is="+i);

System.out.println("table is created");

//step-6

stmt.close();

con .close();

}

}

JDBC driver

Jdbc API contains a set of classes and Interfaces where classes definition is provided by Sun
Micro System and Interfaces Implementation are not provided. For interface Implementation
classes will be provided by vendors, these set of classes are called Jdbc Driver Software.

A Driver software contains set of classes among these classes one class is driver class.Driver
class is a mediator class between a java application and a database.

Java Application use Jdbc API and this API connect to driver class, then driver class connect to
database.

Types of Jdbc Driver

JDBC Driver is a software component that enables java application to communicate with the
database.There are 4 types of JDBC drivers, they are:

 Jdbc-Odbc Bridge Driver

 Native-API driver (partially java driver)

 Network Protocol driver (fully java driver)

 Thin driver (fully java driver)

www.enosislearning.com

Advance JAVA Tutorials

63

Short Description of Jdbc drivers

Driver Database Platform

Type – 1 Independent Dependent.

Type – 2 Dependent Dependent.

Type – 3 Independent Independent.

Type – 4 Dependent Independent.

www.enosislearning.com

Advance JAVA Tutorials

64

JDBC ODBC BRIDGE DRIVER

This driver connect a java program with a database using Odbc driver. It is install automatically
along with JDK software. It is provided by Sun MicroSystem for testing purpose this driver can
not be used in real time application. This driver convert JDBC calls into Odbc calls(function) So
this is called a bridge driver.

Advantage of bridge driver

 Easy to use

 It is a database independent driver

 Can be easily connected to any database.

 This driver software is built-in with JDK so no need to install separately.

Disadvantage of bridge driver

 It is a slow driver so not used in real time application

 Because of Odbc connectivity it is a platform dependent driver.

 It is not a portable driver.

 It is not suitable for applet to connect with database.

NATIVE API DRIVER

Native API driver uses native API to connect a java program directly to the database. Native API
id s C, C++ library, which contains a set of function used to connect with database directly.
Native API will be different from one database to another database. So this Native API driver is
a database dependent driver.

www.enosislearning.com

Advance JAVA Tutorials

65

Advantage of Thin driver

 Native API driver comparatively faster than JDBC-ODBC bridge driver.

Disadvantage of Thin driver

 Native API driver is database dependent and also platform dependent because of Native
API.

NETWORK PROTOCOL DRIVER IN JDBC

The Network Protocol driver uses middle-ware (application server) that converts JDBC calls
directly or indirectly into the vendor-specific database protocol. It is fully written in java..

www.enosislearning.com

Advance JAVA Tutorials

66

Advantage of Network Protocol driver

 No client side library is required because of application server that can perform many
tasks like auditing, load balancing, logging etc.

 This driver is both database and platform independent driver

Disadvantage of Network Protocol driver

 Network support is required on client machine.

 Requires database-specific coding to be done in the middle tier.

 Maintenance of Network Protocol driver becomes costly because it requires database-
specific coding to be done in the middle tier.

THIN DRIVER IN JDBC

The thin driver converts JDBC calls directly into the vendor-specific database protocol. That is
why it is known as thin driver. It is fully written in Java language.

This thin driver uses the following three information to connect with a database.

 Ip address of a machine (system), where the database server is running.

 Port number of the database server.

 Database name, also called SID (service ID).

www.enosislearning.com

Advance JAVA Tutorials

67

Advantage of Thin driver

 Thin driver is the fastest driver among all Jdbc drivers.

 No software is required at client side or server side.

 It is portable driver because it is platform independent.

 It can be used to connect an applet with the database.

Disadvantage of Thin driver

 Thin driver is a database dependent driver.

Why thin driver is database dependent driver ?

Because thin driver internally uses native protocol. Native protocol is a server dependent
protocol it means the protocol can establish connection with a particular server only.

Thin driver connect with database

Oracle corporation has provided two JDBC driver software for connection java application to
a database of oracle server.

www.enosislearning.com

Advance JAVA Tutorials

68

 Oracle oci driver.

 Oracle thin driver.

The following are the connection properties of oracle thin driver.

driver name: Oracle.Jdbc.OracleDriver

url: Jdbc:Oracle:thin@ipaddress:sid

Name System

Password Tiger

How to Connect Java Application with Oracle Database

Oracle corporation has provided two Jdbc driver software for connection java application to
a database of oracle server.

 Oracle oci Driver

 Oracle thin Driver

For connecting java application with the oracle database, we need to follow below steps. In
this example we are using Oracle 10g as the database. So we need to know following
information for the oracle database.

www.enosislearning.com

Advance JAVA Tutorials

69

The following are the connection properties of oracle thin driver.

Driver Class: Oracle.Jdbc.OracleDriver

Connection url: jdbc:oracle:thin:@localhost:1521:xe

Username: The default username for the oracle database is system.

Password
Password is given by the user at the time of installing the oracle
database.

jdbc:oracle:thin:@localhost:1521:x

 jdbc is the API

 oracle is the database

 thin is the driver

 localhost is the server name on which oracle is running, we may also use IP address

 1521 is the port number and

 XE is the Oracle service name.

Note: You may get all above information from the tnsnames.ora file.

Create a table in oracle database

create table student(roll number(10),name varchar2(40));

Example to Connect Java Application with Oracle database

import java.sql.*;

class OracleCon

{

publicstaticvoid main(String args[]){

try

{

//step1 load the driver class

Class.forName("oracle.jdbc.driver.OracleDriver");

www.enosislearning.com

Advance JAVA Tutorials

70

//step2 create the connection object

Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

//step3 create the statement object

Statement stmt=con.createStatement();

//step4 execute query

ResultSet rs=stmt.executeQuery("select * from student");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

//step5 close the connection object

con.close();

}

catch(Exception e)

{

 System.out.println(e);

}

}

}

Connection Interface in JDBC

A Connection is the session between java application and database. The Connection interface
is a factory of Statement, PreparedStatement, and DatabaseMetaData i.e. object of
Connection can be used to get the object of Statement and DatabaseMetaData. The
Connection interface provide many methods for transaction management like
commit(),rollback() etcMethod of Connection Interface

 method Discription

1 public Statement createStatement()
creates a statement object that can
be used to execute SQL queries.

www.enosislearning.com

Advance JAVA Tutorials

71

2
public Statement createStatement(int
resultSetType,int resultSetConcurrency)

Creates a Statement object that will
generate ResultSet objects with the
given type and concurrency.

3 public void setAutoCommit(boolean status)
Used to set the commit status.By
default it is true.

4 public void commit()
saves the changes made since the
previous commit/rollback
permanent.

5 public void rollback()
Drops all changes made since the
previous commit/rollback.

6 public void close():
closes the connection and Releases
a JDBC resources immediately.

Drivermanager Class of JDBC

The DriverManager class acts as an interface between user and drivers. It keeps track of the
drivers that are available and handles establishing a connection between a database and the
appropriate driver. The DriverManager class maintains a list of Driver classes that have
registered themselves by calling the method DriverManager.registerDriver().

Methods of DriverManager Class

 method Description

1 public static void registerDriver(Driver driver)
Used to register the given driver
with DriverManager.

2 public static void deregisterDriver(Driver driver):
Used to registered the given driver
(drop the driver from the list) with
DriverManager.

www.enosislearning.com

Advance JAVA Tutorials

72

3 public static Connection getConnection(String url):
Used to establish the connection
with the specified url.

4
public static Connection getConnection(String
url,String userName,String password):

Used to establish the connection
with the specified url, username
and password.

Statement Interface in JDBC

The Statement interface provides methods to execute queries with the database.

Method of Statement Interface

 method Description

1 public ResultSet executeQuery(String sql)
Used to execute SELECT query. It
returns the object of ResultSet.

2 public int executeUpdate(String sql)
Used to execute specified query,
it may be create, drop, insert,
update, delete etc.

3 public boolean execute(String sql)
Used to execute queries that may
return multiple results.

4 public int[] executeBatch()
Used to execute batch of
commands.

ResultSet Interface in JDBC

The object of ResultSet maintains a cursor pointing to a particular row of data. Initially, cursor
points to before the first row.

Method of ResultSet Interface

 method Description

www.enosislearning.com

Advance JAVA Tutorials

73

1 public boolean next()
Used to move the cursor to the one row
next from the current position.

2 public boolean previous()
Used to move the cursor to the one row
previous from the current position.

3 public boolean first()
Used to move the cursor to the first row in
result set object.

4 public boolean last()
Used to move the cursor to the last row in
result set object.

5 public boolean last()
Used to move the cursor to the last row in
result set object.

Scrollable Resultset in JDBC

In Jdbc ResultSet Interface are classified into two type;.

 Non-Scrollable ResultSet in JDBC

 Scrollable ResultSet

By default a ResultSet Interface is Non-Scrollable, In non-scrollable ResultSet we can move
only in forward direction (that means from first record to last record), but not in Backward
Direction, If you want to move in backward direction use Scrollable Interface.

Difference between Scrollable ResultSet and Non-Scrollable ResultSet

 Non-Scrollable ResultSet Scrollable ResultSet

1 Cursor move only in forward direction
Cursor can move both forward and
backward direction

1
Slow performance, If we want to move nth
record then we need to n+1 iteration

Fast performance, directly move on any
record.

www.enosislearning.com

Advance JAVA Tutorials

74

1
Non-Scrollable ResultSet cursor can not
move randomly

Scrollable ResultSet cursor can move
randomly

Methods of Scrollable ResultSet

Below all methods are used for move the cursor in Scrollable ResultSet.

 afterLast Used to move the cursor after last row.

 BeforeFirst: Used to move the cursor before first row.

 previous: Used to move the cursor backward.

 first: Used to move the cursor first at row.

 last: Used to move the cursor at last row.

Example of Scrollable ResultSet

import java.sql.*;

class ScrollableTest

{

publicstaticvoid main(String[] args) throws Exception

{

Class.forName("oracle.jdbc.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@John-
pc:1521:xe","system","system");

Statement
stmt=con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCUR_REA
D_ONLY);

ResultSet rs=stmt.executeQuery("select * from student");

//reading from button to top

rs.afterLast();

while(rs.previous())

{

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getInt(3));

}

www.enosislearning.com

Advance JAVA Tutorials

75

//move the cursor to 3rd record

rs.absolute(3);

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getInt(3));

//move the cursor to 2nd record using relative()

rs.relative(-1);

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getInt(3));

int i=rs.getRow(); // get cursor position

System.out.println("cursor position="+i);

//cleanup

rs.close();

stmt.close();

con.close();

 }

}

Difference between PreparedStatement and Statement

If the sql command is same then actually no need to compiling it for each time before it is
executed. So the performance of an application will be Increased. In this
case PreparedStatement is used.

PreparedStatement Interface is derived Interface of statement and CallableStatement is
derived Interface of PreparedStatement.

www.enosislearning.com

Advance JAVA Tutorials

76

Why use PreparedStatement

We know that when working with Statement Interface of JDBC the sql command will be
compiled first and then it is executed at database side even through the same sql command is
execute repeatedly but each time the command is compiled and then executed at database.
Due to this performance of application will be decreased So overcome this problem use
PreparedStatement. In PreparedStatement, If the sql command is same then actually no need
to compiling it for each time before it is executed.

In case of preparedStatement

 First sql command is send to database for compilation and then compiled code will be
stored in preparedStatement object.

 The compiled code will be executed for n number of time without recompiling the sql
command.

 The criteria to use preparedStatement is when we want to execute same sql query for
multiple times with different set of values.

 Comparatively preparedStatement is faster than Statement Interface.

Difference between PreparedStatement and Statement

 Statement PreparedStatement

1
Statement interface is slow
because it compile the
program for each execution

PreparedStatement interface is faster, because its
compile the command for once.

www.enosislearning.com

Advance JAVA Tutorials

77

2

We can not use ? symbol in sql
command so setting dynamic
value into the command is
complex

We can use ? symbol in sql command, so setting
dynamic value is simple.

3
We can not use statement for
writing or reading binary data
(picture)

We can use PreparedStatement for reading or writing
binary data.

Create an object of PreparedStatement

Syntax

Connection con; // con is reference of connection

PreparedStatement pstmt=con.prepareStatement("sql command");

Why use '?' symbol in PreparedStatement

To pre-compile a command only syntax of the command is required so we can use '?' symbol
for value in the command. '?' symbol is called parameter or replacement operator or place-
resolution operator.

Syntax

PreparedStatement pstmt=con.prepareStatement("Insert into student_table value(?, ?,
?)");

Note: In PreparedStatement only '?' symbol are allow, no other symbols are allowed.

Note: '?' is only for replacing value but not for table name or column names.

Note: '?' symbol are not allowed in DDL operation.

Setting value

We call setxxx() methods to set the value in place of ? symbols, before executing the
command. Here pass two parameters for setxxx(), where first parameter is index and second
is value. XXX means any data type.

Syntax

www.enosislearning.com

Advance JAVA Tutorials

78

pstmt.setInt(1,102);

Example of PreparedStatement

import java.sql.*;

import javax.sql.*;//PreparedStatement;

import java.util.*;

class PrepardTest1

{

Connection con;

void openConnection()throws Exception

{

Class.forName("oracle.jdbc.OracleDriver");

System.out.println("driver is loaded");

con=DriverManager.getConnection("jdbc:oracle:thin:@John-
pc:1521:xe","system","system");

System.out.println("connection is opend");

}

void insertTest()throws Exception

{

PreparedStatement pstmt=con.prepareStatement("insert into student values(?,?,?) ");

Scanner s=new Scanner(System.in);

String Choice="yes";

while(Choice.equals("yes"))

{

System.out.println("enter student id");

int sid=s.nextInt();

System.out.println("enter student name");

String sname=s.next();

System.out.println("enter Student marks");

int marks=s.nextInt();

www.enosislearning.com

Advance JAVA Tutorials

79

//setting the values

pstmt.setInt(1,sid);

pstmt.setString(2,sname);

pstmt.setInt(3,marks);

int i=pstmt.executeUpdate();

System.out.println(i+"Row inserted");

System.out.println("do you want to inset another row(Yes/no)");

Choice=s.next();

}//end while

pstmt.close();

}

void closeConnection()throws Exception

{

con.close();

System.out.println("connection is closed");

}

publicstaticvoid main(String[] args) throws Exception

{

PrepardTest1 pt=new PrepardTest1();

pt.openConnection();

pt.insertTest();

pt.closeConnection();

}

}

Callablestatement in Jdbc

To call the procedures and functions of a database, CallableStatement interface is used.

CallableStatement is a derived Interface of preparedStatement. It has one additional feature
over PreparedStatement that is calling procedures and function of a database.

Because of CallableStatement is inherited from PreparedStatement all the features of
PreparedStatement are also available with CallableStatement.

www.enosislearning.com

Advance JAVA Tutorials

80

Create object of CallableStatement

The prepareCall() method of Connection interface returns the instance of CallableStatement.
To create a reference of CallableStatement we have two syntaxes one with command and the
other is wih calling procedure or function.

Syntax of prepareCall() method

public CallableStatement prepareCall("{ call procedurename(?,?...?)}");

Syntax

CallableStatement cstmt=con.prepareCall("sql command");

Syntax

CallableStatement cstmt=con.prepareCall("{call procedure name or function name}");

Syntax

CallableStatement stmt=con.prepareCall("{call myprocedure(?,?)}");

Resultsetmetadata Interface in JDBC

www.enosislearning.com

Advance JAVA Tutorials

81

The metadata means data about data, in case of database we get metadata of a table like total
number of column, column name, column type etc.

While executing a select operation on a database if the table structure is already known for
the programmer, then a programmer of JDBC can read the data from ResutlSet object directly.
If the table structure is unknown then a JDBC programmer has to take the help
of ResultSetMetadata.

A ResultSetMetaData reference stores the metadata of the data selected into a ResutlSet
object.

How to get the object of ResultSetMetaData ?

To obtain a object of ResultSetMetaData, we need to call getMetaData() method of ResutlSet
object..

Syntax

ResultSetMetaData rsmd=rs.getMetaData();

Methods of ResultSetMetaData

The following are the methods called on ResultSetMetaData reference.

 method Discription

1 getColumnCount() To find the number of columns in a ResultSet

2 getColumnName() To find the column name of a column index.

3 getColumnTypeName() To find data type of a column.

4 getColumnDisplaySize() To find size of a column.

www.enosislearning.com

Advance JAVA Tutorials

82

CHAPTER 4 SERVLET
INTRODUCTION TO SERVLET

Servlet is a java program, exist and executes in j2ee servers, used to receive the http protocol

request, process and send response to client.

Using Servlet, we can collect input from users through web page forms, present records from a

database or another source, and create web pages dynamically.

The above figure shows HTTP request and response generated with the help of servlet

container in server.

www.enosislearning.com

Advance JAVA Tutorials

83

ADVANTAGE OF SERVLET

Better performance: Because it creates a thread for each request not process (like CGI).

Portability: Because it uses java language and java is robust language.

Robust: Servlet are managed by JVM so no need to worry about memory leak, garbage

collection etc.

Secure: Because it uses java language and java is a secure language.

Features of Servlet

Servlet is a java program, exist and executes in j2ee servers, used to receive the http protocol

request, process and send response to client.

Using Servlets, we can collect input from users through web page forms, present records from

a database or another source that may be any servlet, JSP or html page and create web pages

dynamically.

Container in Servlet

Container provides runtime environment for Java2ee (j2ee) applications. A web container is

a predefined application provided by a server, its takes care of Servlet and JSP.

In console based java applications a class which contains main method acts as a container for

other classes.

Container in Servlet Example

class Vachile

{

void speed()

{

System.out.println("Speed limit is 40 km/hr");

www.enosislearning.com

Advance JAVA Tutorials

84

}

}

class Mainclass

{

public static void main(String args[])

{

Vachile v=new Vachile();

v.speed();

}

}

Output

Speed limit is 40 km/hr

Here Mainclass is providing run-time support for vehicle class so main class is called a

container.

In GUI based applications a frame acts as a container for other awt components like button,

textfield etc.

Operations of Servlet Container.

 Life Cycle Management

 Communication Support

 Multithreaded support

 Security etc.

1. Life cycle management: Servlet and JSP are dynamic resources of java based web

application. The Servlet or JSP will run on a server and at server side. A container will take care

www.enosislearning.com

Advance JAVA Tutorials

85

about life and death of a Servlet or JSP.

A container will instantiate, Initialize, Service and destroy of a Servlet or JSP. It means life cycle

will be managed by a container.

2. Communication Support: If Servlet or JSP wants to communicate with server than its need

some communication logic like socket programming. Designing communication logic is

increase the burden on programmers, but container act as a mediator between a server and

a Servlet or JSP and provides communication between them.

3. Multithreading: A container creates a thread for each request, maintains the thread and

finally destroys it whenever its work is finished.

4. Security: A programmer is not required to write security code in a Servlet/JSP. A container

will automatically provide security for a Servlet/JSP.

Servlet Interface

It is an interface to define a Servlet, the implementation class of this Servlet should override

all methods of Servlet interface.

Servlet interface needs to be implemented for creating any Servlet (either directly or

indirectly). It provides 3 life cycle methods that are used to initialize the Servlet, to service the

requests, and to destroy the Servlet and 2 non-life cycle methods.

Methods of Servlet interface

Method Description

public void init(ServletConfig config)

initializes the Servlet. It is the life
cycle method of Servlet and
invoked by the web container
only once.

www.enosislearning.com

Advance JAVA Tutorials

86

public void service(ServletRequest request,ServletResponse
response)

provides response for the
incoming request. It is invoked at
each request by the web
container.

public void destroy()
is invoked only once and indicates
that Servlet is being destroyed.

public ServletConfig getServletConfig()
returns the object of
ServletConfig.

public String getServletInfo()
returns information about Servlet
such as writer, copyright, version
etc.

GENERICSERVLET CLASS

GenericServlet class Implements Servlet, ServletConfig and Serializable Interfaces. It provides

the implementation of all the methods of these Interfaces except the service method.

GenericServlet class can handle any type of request so it is protocol Independent. You may

create a generic Servlet by inheriting the GenericServlet class and providing the

Implementation of the service method.

This is implemented abstract class for Servlet Interface, have the implementation for all

methods of Servlet interface except service method.

EXAMPLE OF SERVLET BY INHERITING THE GENERICSERVLET CLASS

import java.io.*;

import javax.servlet.*;

public class GenericServletDemo extends GenericServlet

{

public void service(ServletRequest req,ServletResponse resp)

www.enosislearning.com

Advance JAVA Tutorials

87

throws IOException,ServletException

{

res.setContentType("text/html");

PrintWriter out=resp.getWriter();

out.print("<html><body>");

out.print("Example of GenericServlet");

out.print("</body></html>");

} }

LIFE CYCLE OF SERVLET

The web container maintains the life cycle of a Servlet instance or object.

1. Loading (Servlet class is loaded)

2. Installation (Servlet instance is created)

3. Initialization (init method is invoked)

4. Service providing (service method is invoked)

5. Destroying (destroy method is invoked)

www.enosislearning.com

Advance JAVA Tutorials

88

As displayed in the above diagram, there are three states of a Servlet: new, ready and end.

The Servlet is in new state if Servlet instance is created. After invoking the init() method,

Servlet comes in the ready state. In the ready state, Servlet performs all the tasks. When the

web container invokes the destroy() method, it shifts to the end state.

1. Servlet class is loaded

The classloader is responsible to load the Servlet class. The Servlet class is loaded when the
first request for the Servlet is received by the web container.

2. Servlet instance is created

The web container creates the instance of a Servlet after loading the Servlet class. The Servlet
instance is created only once in the Servlet life cycle.

3. init method is invoked

The web container calls the init method only once after creating the Servlet instance. The init
method is used to initialize the Servlet. It is the life cycle method of the javax.servlet.Servlet
interface. Syntax of the init method is given below:

Syntax

public void init(ServletConfig config) throws ServletException

4. service method is invoked

The web container calls the service method each time when request for the Servlet is

received. If Servlet is not initialized, it follows the first three steps as described above then

calls the service method. If Servlet is initialized, it calls the service method. Notice that Servlet

is initialized only once. The syntax of the service method of the Servlet interface is given

below:

Syntax

public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException

www.enosislearning.com

Advance JAVA Tutorials

89

5. Destroy method is invoked

The web container calls the destroy method before removing the Servlet instance from the

service. It gives the Servlet an opportunity to clean up any resource for example memory,

thread etc. The syntax of the destroy method of the Servlet interface is given below:

Syntax

public void destroy()

Servlet Life Cycle Example

import javax.servlet.*;

import java.io.*;

public class myservlet extends GenericServlet

{

 public void init(ServletConfig sc)

{

 System.out.println("init executed...");

}

public void service(ServletRequest req, ServletResponse resp)throws IOException,

ServletException

{

System.out.println("service executed...");

PrintWriter out=resp.getWriter();

resp.setContentType("text/html");

out.println("plz observe output on server console window");

}

public void destroy()

{

www.enosislearning.com

Advance JAVA Tutorials

90

 System.out.println("Distroy executed...");

}

}

web.xml

<web-app>

<servlet>

<servlet-name>srv</servlet-name>

<servlet-class>myservlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>srv</servlet-name>

<url-pattern>/ms</url-pattern>

</servlet-mapping>

</web-app>

Content Type in Servlet

Content Type is also known as MIME Type. MIME stand for Multipurpose internet Mail

Extension. It is a HTTP header that provides the description about what are you sending to

the browser (like send image, text, video etc.).

This is the format of http protocol to carry the response contains to the client..

Example: Suppose you send html text based file as a response to the client the MIME type

specification is

Syntax

www.enosislearning.com

Advance JAVA Tutorials

91

response.setcontentType("text/html");

MIME type have two parts, They are:

 Base name

 Extension name

Base name: It is the generic name of file.

Extension name: It is extension name for specific file type.

The supporting MIME type by http protocol are:

File MIME Type Extension

Xml text/xml. .xml.

HTML text/html. .html.

Plaintext File text/plain. .txt.

PDF application/pdf. .pdf.

gif Image image/gif. .gif.

JPEG Image image/jpeg. .jpeg.

PNG Image image/x-png. .png.

MP3 Music File audio/mpeg. .mp3.

MS Word Document application/msword. .doc.

Excel work sheet application/vnd.ms-sheet. .xls.

www.enosislearning.com

Advance JAVA Tutorials

92

Power Point Document application/vnd.ms-powerpoint. .ppt.

Syntax

<web-app>

<servlet>

<servlet-name>alias name</servlet-name>

<servlet-class>fully qualified class name</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>alias name</servlet-name>

<url-pattern>/url pattern</url-pattern>

</servlet-mapping>

</web-app>

Welcome File Configuration in Servlet

A welcome file is the file that is invoked automatically by the server, if you don't specify any

file name. Welcome file is a default starting page of the website.

The welcome-file-list element of web-app, is used to define a list of welcome files. Its sub

element is welcome-file that is used to define the welcome file.

By default server looks for the welcome file in following order:

1. index.html

2. index.htm

3. index.jsp

Note: If welcome file is not configure and index.html or index.jsp does not exits in an

application then container sends http status 404 message to the browser.

www.enosislearning.com

Advance JAVA Tutorials

93

If you have specified welcome-file in web.xml, and all the files index.html, index.htm and

index.jsp exists, priority goes to welcome-file.

If welcome-file-list entry doesn't exist in web.xml file, priority goes to index.html file then

index.htm and at last index.jsp file.

Let's see the web.xml file that defines the welcome files.

web.xml

Example

<web-app>

 <welcome-file-list>

 <welcome-file>home.html</welcome-file>

 <welcome-file>home.jsp</welcome-file>

 </welcome-file-list>

</web-app>

Now, home.html and default.html will be the welcome files.

If you have the welcome file, you can directory invoke the project as given below:

Syntax & Example :

http://hostname:portno/contextroot/urlpatternofservlet.

http://localhost:8888/myproject/

www.enosislearning.com

Advance JAVA Tutorials

94

SERVLET FIRST PROGRAM

Servlet programming is very simple but you need some basic knowledge for example

interface, abstract class, exception handling, file handling etc.

STEPS TO WRITE SERVLET PROGRAM

THERE ARE GIVEN 6 STEPS TO CREATE A SERVLET EXAMPLE. THESE STEPS ARE

REQUIRED FOR ALL THE SERVERS. THE SERVLET EXAMPLE CAN BE CREATED BY

THREE WAYS:

1.BY IMPLEMENTING SERVLET INTERFACE

 2.BY INHERITING GENERICSERVLET CLASS, (OR)

 3.BY INHERITING HTTPSERVLET CLASS

THE MOSTLY USED APPROACH IS BY EXTENDING HTTPSERVLET BECAUSE IT

PROVIDES HTTP REQUEST SPECIFIC METHOD SUCH AS DOGET(), DOPOST().HERE, WE

ARE GOING TO USE APACHE TOMCAT SERVER IN THIS EXAMPLE. THE STEPS ARE AS

FOLLOWS:

1.CREATE A DIRECTORY STRUCTURE

2.CREATE A SERVLET
3.COMPILE THE SERVLET
4.CREATE A DEPLOYMENT DESCRIPTOR
5.START THE SERVER AND DEPLOY THE PROJECT
6.ACCESS THE SERVLET

1. Create a directory structure

The directory structure defines that where to put the different types of files so that web

container may get the information and responds to the client.

The Sun Microsystem defines a unique standard to be followed by all the server vendors. see

the directory structure that must be followed to create the servlet.

www.enosislearning.com

Advance JAVA Tutorials

95

2. Create a Servlet

Three ways to do this:- By implementing the Servlet interface

By inheriting the GenericServlet class

 By inheriting the HttpServlet class

 The HttpServlet class is widely used to create the servlet because it provides methods to

handle

http requests such as doGet(), doPost, doHead() etc.In this example we are going to create a

servlet that extends the HttpServlet class.

In this example, we are inheriting the HttpServlet class and providing the implementation of the

doGet() method. This is default method.

3.Compile a Servlet

For compiling the Servlet, jar file is required to be loaded.

 & servlet-api.jar file should be attached with Apache Tomcat server.

Use this path to add external jar:- Go to project Right click on project  Select Build path 

Configure build path  Select Library  Select Add External jars  Brows your servlet-api.jar

file from predefined location  Apply and Close.

4. Create Deployment Descriptor(web.xml file)

The deployment descriptor is an xml file, from which Web Container gets

www.enosislearning.com

Advance JAVA Tutorials

96

the information about the servet to be invoked.

There are many elements in the web.xml file. The following structure shows contents in

.xml file.

 Where <web-app> represents the whole application.

<servlet> is sub element of <web-app> and represents the servlet.

<servlet-name> is sub element of <servlet> represents the name of the servlet.

<servlet-class> is sub element of <servlet> represents the class of the servlet.

<servlet-mapping> is sub element of <web-app>. It is used to map the servlet.

<url-pattern> is sub element of <servlet-mapping>. This pattern is used at client side to
invoke the servlet.

5. Start the server & deploy the project

One Time Configuration for Apache Tomcat Server

You need to perform 2 tasks:

set JAVA_HOME or JRE_HOME in environment variable (It is required to start server).

Go to My Computer properties -> Click on advanced tab then environment variables ->

Click on the new tab of user variable -> Write JAVA_HOME in variable name and paste the

path of jdk folder in variable value -> ok -> ok -> ok.

Apache tomcat that needs to install

www.enosislearning.com

Advance JAVA Tutorials

97

Change the port number of tomcat (optional). It is required if another server is running

on same port (8080).

 How to deploy the servlet project?

Copy the project and paste it in the webapps folder under apache tomcat.

6. How to access the servlet

http://hostname:portno/contextroot/urlpatternofservlet.

For example:

http://localhost:9999/demo/welcome

How to configure tomcat server in Eclipse for the first time ?

For configuring the tomcat server in eclipse IDE, click on servers tab at the bottom side

of the IDE -> right click on blank area -> New -> Servers -> choose tomcat then its

version -> next -> click on Browse button -> select the apache tomcat root folder

previous to bin -> next -> addAll -> Finish.

CREATING SERVLET EXAMPLE IN ECLIPSE IDE

1) Create the dynamic web project:

For creating a dynamic web project click on File Menu -> New ->

 Project..-> Web -> dynamic web project -> write your project name e.g. first -> Finish.

2) Create the servlet in eclipse IDE:

www.enosislearning.com

Advance JAVA Tutorials

98

For creating a servlet, explore the project by clicking the + icon

 -> explore the Java Resources -> right click on src -> New ->

servlet -> write your servlet name e.g. Hello -> uncheck all the checkboxes except doGet() ->
next -> Finish.

3) add jar file in eclipse IDE:

For adding a jar file, right click on your project -> Build Path ->

Configure Build Path -> click on Libraries tab in Java Build Path -> click on Add External JARs
button -> select the servlet-api.jar file under tomcat/lib -> ok.

4) Start the server and deploy the project:

For starting the server and deploying the project in one step, Right

click on your project -> Run As -> Run on Server -> choose tomcat server -> next -> addAll ->
finish.

Now tomcat server has been started and project is deployed. To access the servlet write the url
pattern name in the URL bar of the browser.

WRITE A WEB APPLICATON TO SEND HELLO WORD AS RESPONSE TO CLIENT USING

SERVLET.

FIRSTSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

public class FirstServlet extends HttpServlet {

 public void service(HttpServletRequest request, HttpServletResponse response)throws

IOException, ServletException

 {

 // get request parameter

 // business operation

 String resultvalue="<body bgcolor="cyan" text="red"> <h1> hello word</h1></body>";

 // prepare response

www.enosislearning.com

Advance JAVA Tutorials

99

 resp.setContentType("text/html");

 printWriter out=resp.getWriter();

 // send response

 out.print(resultvalue);

 out.close();

 }

}

WEB.XML

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

</web-app>

Interfaces used in servlet API

1. Servlet Request Interface
 An object of ServletRequest is used to provide the client request information to a

servlet such as content type, content length, parameter names and values, header

informations, attributes etc

 Example of ServletRequest to display the name of the user

www.enosislearning.com

Advance JAVA Tutorials

100

 In this example, we are displaying the name of the user in the servlet. For this

purpose, we have used the getParameter method that returns the value for the

given request parameter name.

2. Requser Dispatcher Interface

 The RequestDispatcher interface provides the facility of dispatching

the request to another resource it may be html, servlet or jsp.

 This interface can also be used to include the content of another

resource also.There are two methods defined in the

RequestDispatcher interface.

 public void forward(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Forwards a request from a servlet to another

resource (servlet, JSP file, or HTML file) on the server.

 public void include(ServletRequest request,ServletResponse response)throws

ServletException,java.io.IOException:Includes the content of a resource (servlet, JSP

page, or HTML file) in the response.

The following figure shows forward method:

The following figure shows include method:

www.enosislearning.com

Advance JAVA Tutorials

101

Example:

In this example, we are validating the password entered by the user. If password is servlet, it

will forward the request to the WelcomeServlet, otherwise will show an error message.

index.html file: for getting input from the user.

Login.java file: a servlet class for processing the response. If password is servet, it will forward

the request to the welcome servlet.

WelcomeServlet.java file: a servlet class for displaying the welcome message.

web.xml file: a deployment descriptor file that contains the information about the servlet.

3. SendRedirect Interface

www.enosislearning.com

Advance JAVA Tutorials

102

The sendRedirect() method of HttpServletResponse interface can be used to redirect

response to another resource, it may be servlet, jsp or html file.

It accepts relative as well as absolute URL.

It works at client side because it uses the url bar of the browser to make another

request. So, it can work inside and outside the server.

In this example, we are redirecting the request to the google server. Notice that

sendRedirect method works at client side, that is why we can our request to anywhere.

We can send our request within and outside the server.

Difference between forward and sendRedirect method:

4. ServletConfig Interface in Servlet

An object of ServletConfig is created by the web container for each servlet using its
initialization phase. This object can be used to get configuration information from web.xml
file.

An object of ServletConfig is available to the Servlet during its execution, once the servlet
execution is completed, automatically ServletConfig interface object will be removed by the
container.

When ever compiler executes init() method then the ServletConfig will be created in general.
An object of ServletConfig contain the

An object of ServletConfig contain the <init-param> data in the form of key,value pairs, here
the keys represents init param names and values are its values, which are represented in the
web.xml file

Advantage of ServletConfig

If the configuration information is modified from the web.xml file, we don't need to change

the Servlet. So it is easier to manage the web application if any specific content is modified

from time to time.

www.enosislearning.com

Advance JAVA Tutorials

103

The core advantage of ServletConfig is that you don't need to edit the Servlet file if information

is modified from the web.xml file.

Methods of ServletConfig interface

 public String getInitParameter(String name):Returns the parameter value for the
specified parameter name.

 public Enumeration getInitParameterNames():Returns an enumeration of all the
initialization parameter names.

 public String getServletName():Returns the name of the Servlet.

 public ServletContext getServletContext():Returns an object of ServletContext.

How to Get ServletConfig Object into Servelt

An object of ServletConfig can be obtained in 2 ways,

Way 1. Syntax

ServletConfig conf = getServletConfig();

In the above statement, we are directly calling getServletConfig() method as it is available in

Servlet interface, inherited into GenericServlet and defined and further inherited into

HttpServlet and later inherited into our own servlet class.

Way 2. Syntax

ServletConfig object will be available in init() method of the servlet.

 public void init(ServletConfig config)

{

 //

}

www.enosislearning.com

Advance JAVA Tutorials

104

So finally we are able to create ServletConfig object in our servlet class, then how to get the

data from that object ?

How to Retrieve Data from ServletConfig Interface Object

In order to retrieve the data of the ServletConfig we have two methods, which are present in

ServletConfig interface.

Syntax

public String getInitParameter("param name");

public Enumeration getInitParameterNames();

SERVLETCONTEXT INTERFACE IN SERVLET

ServletContext is one of pre-defined interface available in javax.servlet.*; Object of

ServletContext interface is available one per web application. An object of ServletContext is

automatically created by the container when the web application is deployed.

Assume there exist a web application with 2 servlet classes, and they need to get some

technical values from web.xml, in this case ServletContext concept will works great, i mean all

servlets in the current web application can access these context values from the web.xml but

its not the case in ServletConfig, there only particular servelet can access the values from the

web.xml which were written under <servlet> tag, hope you remember. Have doubt ? just

check Example of ServletConfig.

HOW TO GET SERVLETCONTEXT OBJECT INTO OUR SERVLET CLASS

In servlet programming we have 3 approaches for obtaining an object of ServletContext

interface

www.enosislearning.com

Advance JAVA Tutorials

105

Way 1.

SYNTAX

ServletConfig conf = getServletConfig();

ServletContext context = conf.getServletContext();

First obtain an object of ServletConfig interface ServletConfig interface contain direct method

to get Context object, getServletContext();.

Way 2.

Direct approach, just call getServletContext() method available in GenericServlet [pre-

defined]. In general we are extending our class with HttpServlet, but we know HttpServlet is

the sub class of GenericServlet.

SYNTAX

public class Java4s extends HttpServlet

{

public void doGet/doPost(-,-)

{

//

}

ServletContext ctx = getServletContext();

}

Way 3.

We can get the object of ServletContext by making use of HttpServletRequest object, we have

direct method in HttpServletRequest interface.

SYNTAX

www.enosislearning.com

Advance JAVA Tutorials

106

public class Java4s extends HttpServlet

{

public void doGet/doPost(HttpServletRequest req,-)

{

ServletContext ctx = req.getServletContext();

}

}

HOW TO RETRIEVE DATA FROM SERVLETCONFIG INTERFACE OBJECT

ServletContext provide these 2 methods, In order to retrieve the data from the web..xml [In

web.xml we have write <context-param> tag to provide the values, and this <context-param>

should write outside of <servlet> tag as context should be accessed by all servlet classes].

In general database related properties will be written in this type of situation, where every

servlet should access the same data.

SYNTAX

public String getInitParameter("param name");

public Enumeration getInitParameterNames();

Difference Between dopost and doget in Servlet

Http protocol mostly use either get or post methods to transfer the request. post method are

generally used whenever you want to transfer secure data like password, bank account etc.

Sr. No Get method Post method

www.enosislearning.com

Advance JAVA Tutorials

107

1
Get Request sends the request

parameter as query string appended at
the end of the request.

Post request send the request parameters
as part of the http request body.

2
Get method is visible to every one (It
will be displayed in the address bar of

browser).

Post method variables are not displayed
in the URL.

3
Restriction on form data, only ASCII

characters allowed.
No Restriction on form data, Binary data

is also allowed.

4
Get methods have maximum size is

2000 character.
Post methods have maximum size is 8 mb.

5
Restriction on form length, So URL

length is restricted
No restriction on form data.

6 Remain in browser history. Never remain the browser history.

EXCEPTION HANDLING IN SERVLET

The process of converting system error messages into user friendly error message is known

as Exception handling. This is one of the powerful feature of Java to handle run time error

and maintain normal flow of java application.

EXCEPTION

An exception is an event, which occurs during the execution of a program, that disrupts the

normal flow of the program's Instructions.

 Programetically Exception Handling mechanism

 Declarative Exception Handling mechanism

PROGRAMETICALLY EXCEPTION HANDLING MECHANISM

www.enosislearning.com

Advance JAVA Tutorials

108

The approach to use try, catch block in java code to handle exceptions is known as

Programetically Exception Handling mechanism.

INDEX.HTML

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="continue"/>

</form>

EXCEPTION HANDLING IN SERVLET

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

 public class FirstServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 Cookie ck=new Cookie("uname",n);//creating cookie object

 response.addCookie(ck);//adding cookie in the response

 //creating submit button

 out.print("<form action='servlet2'>");

 out.print("<input type='submit' value='continue'>");

 out.print("</form>");

 out.close();

www.enosislearning.com

Advance JAVA Tutorials

109

 }catch(Exception e){System.out.println(e);}

 }

}

DECLARATIVE EXCEPTION HANDLING MECHANISM

The approach to use xml tags in web.xml file to handle the exception is known as declarative

exception handling mechanism.

This mechanism is usful if exception are common for mote than one servlet program. In real

time application this mechanism is widely use.

ERROR.HTML

<html>

<body>

<p> Oooops....... page not found</p>

</body>

</html>

MYSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

public class FirstServlet extends HttpServlet {

 public void service(HttpServletRequest request, HttpServletResponse response)throws

IOException, ServletException

 {

www.enosislearning.com

Advance JAVA Tutorials

110

 // get request parameter

 // business operation

 String resultvalue="<body bgcolor="cyan" text="red"> <h1> hello word</h1></body>";

 // prepare response

 resp.setContentType("text/html");

 printWriter out=resp.getWriter();

 // send response

 out.print(resultvalue);

 out.close();

 }

}

WEB.XML

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>Myservlet</servlet-class>

</servlet>

<error-page>

<exception-type>java.lang.NumberFormateException</exception-type>

<location>/error.html</location>

</error-page>

</web-app>

WAR FILE IN SERVLET

www.enosislearning.com

Advance JAVA Tutorials

111

A war (web archive) File is a compressed format of files of a web project. It may have servlet,

xml, jsp, image, html, css, js etc.

ADVANTAGE OF WAR FILE

Saves time: The war file combines all the files into a single unit. It is a compressed format of

all files, So it takes less time while transferring file from client to server.

HOW TO CREATE WAR FILE?

To create war file, we need jar tool of JDK. We need to use -c switch of jar, to create the war

file.

Go inside the project directory of your project (outside the WEB-INF), then write the following

command:

SYNTAX

jar -cvf projectname.war *

Here, -c is used to create file, -v to generate the verbose output and -f to specify the archive

file name.

The * (asterisk) symbol signifies that all the files of this directory (including sub directory).

HOW TO EXTRACT WAR FILE MANUALLY?

To extract the war file, you need to use -x switch of jar tool of JDK. Let's see the command to

extract the war file.

SYNTAX

jar -xvf projectname.war

SESSION TRACKING IN SERVLET

www.enosislearning.com

Advance JAVA Tutorials

112

Session is the conversion of user within span of time. In general meaning particular interval

of time.Tracking is the recording of the thing under session.

Session Tracking is remembering and recording of client conversion in span of time. It is also

called as session management.

If web application is capable of remembering and recording of client conversion in span of

time then that web application is called as stateful web application.

WHY DO WE NEED SESSION TRACKING ?

 Http protocol is stateless, to make stateful between client and server we need Session

Tracking.

 Session Tracking is useful for online shopping, mailing application, E-Commerce

application to track the conversion.

 Http protocol is stateless, that means each request is considered as the new request. You

can see in below image.

WHY TO USE SESSION TRACKING ? :

To recognize the user It is used to recognize the particular user.

www.enosislearning.com

Advance JAVA Tutorials

113

WHY HTTP IS DESIGN AS STATELESS PROTOCOL ?

If Http is stateful protocol for multiple requests given by client to web application single

connection will be used between browser and web server across the multiple requests. This

may make clients to engage connection with web server for long time event though the

connection are ideal. Due to this the web server reach to maximum connections even though

most of its connection are idle. To overcome this problem Http is given as stateless.

SESSION TRACKING TECHNIQUES

Servlet technology allows four technique to track conversion, they are;

 Cookies

 URL Rewriting

 Hidden Form Field

 HttpSession

COOKIES HANDLING IN SERVLET

Cookies are text files stored on the client computer and they are kept for various information

like name, a single value, and optional attributes such as a comment, path and domain

qualifiers, a maximum age, and a version number.

www.enosislearning.com

Advance JAVA Tutorials

114

Cookies are created using Cookie class present in Servlet API. Cookies are added to response

object using the addCookie() method. This method sends cookie information over the HTTP

response stream. getCookies() method is used access the cookies that are added to response

object.

In Http Session technique, container internally generates a cookies for transferring the session

ID between server and client. Apart from container generated cookie a servlet programmer

can also generate cookies for storing the data for a client.

HOW COOKIE WORKS

By default, each request is considered as a new request. In cookies technique, we add cookie

with response from the servlet. So cookie is stored in the cache of the browser (chrome,

firefox) at client side. After that if request is sent by the user, cookie is added with request by

default. Thus, we recognize the user as the old user.

WHEN USE COOKIES ?

When session ID is not required and when less number of input values are submitted by client

in that case in place of using HttpSession Technique you can use cookies Technique to reduce

the burden on server.

POINTS TO REMEMBER

 Cookies is pressistance resource which is stores at client location.

 We can store 3000 cookies in cookies file at a time.

 The cookies are introduced by net scape communication.

 Cookies files exist up to 3 year.

 Size of cookies is 4 kb.

TYPE OF COOCKIES

There are two types of cookies, those are given below;

www.enosislearning.com

Advance JAVA Tutorials

115

 In-memory cookies or pre session cookies

 Persistent cookies

In-memory cookies: By default cookie is in-memory coockie, This type of cookie is lives until

that browser is destroy(close). It is valid for single session only. It is removed each time when

user closes the browser.

Persistent cookies: Presestent cookie lives on a browser until its expiration time is reached it

means , eventhough you close or reopen the browser but still the cookie exists on the

browser. It is valid for multiple session. It is not removed each time when user closes the

browser. It is removed only if user logout or signout.

COOKIE CLASS

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a some

constructor and methods for cookies.

CONSTRUCTOR OF COOKIE CLASS

Constructor Description

Cookie() Used for constructs a cookie.

Cookie(String name, String value)
Used for constructs a cookie with a specified

name and value.

METHODS OF COOKIE CLASS

Methods Description

public void setMaxAge(int expiry)
It is used for Sets the maximum age of the cookie

in seconds.

www.enosislearning.com

Advance JAVA Tutorials

116

public String getName()
It is used for Returns the name of the cookie. The

name cannot be changed after creation.

public String getValue() It is used for Returns the value of the cookie.

public void setName(String name) It is used for changes the name of the cookie.

public void setValue(String value) It is used for changes the value of the cookie.

public void addCookie(Cookie ck)
It is method of HttpServletResponse interface

which is used to add cookie in response object.

public Cookie[] getCookies()
It is method of HttpServletRequest interface which

is used to return all the cookies from the browser.

CREATE COOKIES

To create cookies you need to use Cookie class of javax.servlet.http package.

SYNTAX

Cookie c=new Cookie(name, value); // here name and value are string type

ADD COOKIES

To add a cookie to the response object, we use addCookie() mehtod.

SYNTAX

Cookie c=new Cookie(); //creating cookie object

response.addCookie(c1); //adding cookie in the response

www.enosislearning.com

Advance JAVA Tutorials

117

READ COOKIES FOR BRoWSER

To read Cookies from browser to a servlet, we need to call getCookies methods given by

request object and it returns an array type of cookie class.

SYNTAX

response.addCookie(c1);

Cookie c[]=request.getCookie();

EXAMPLE OF SESSION TRACKING BY USING COOKIES

INDEX.HTML

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="continue"/>

</form>

FIRSTSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

www.enosislearning.com

Advance JAVA Tutorials

118

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 Cookie ck=new Cookie("uname",n);//creating cookie object

 response.addCookie(ck);//adding cookie in the response

 //creating submit button

 out.print("<form action='servlet2'>");

 out.print("<input type='submit' value='continue'>");

 out.print("</form>");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SECONDSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

www.enosislearning.com

Advance JAVA Tutorials

119

 Cookie ck[]=request.getCookies();

 out.print("Hello "+ck[0].getValue());

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

HIDDEN FORM FIELD

Tracking client conversion using Html hidden variables in secure manner is known as hidden

form field.

HOW TO USE HIDDEN FORM FIELD ?

In Hidden Form Field we are use html tag is <input type="hidden"> and with this we assign

session ID value.

SYNTAX

<input type="hidden" name="uname" value="porter">

EXAMPLE OF SESSION TRACKING BY USING HIDDEN FORM FIELD

INDEX.HTML

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="continue"/>

</form>

www.enosislearning.com

Advance JAVA Tutorials

120

FIRSTSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 //creating form that have invisible textfield

 out.print("<form action='servlet2'>");

 out.print("<input type='hidden' name='uname' value='"+n+"'>");

 out.print("<input type='submit' value='continue'>");

 out.print("</form>");

 out.close();

 }

 catch(Exception e){System.out.println(e);}

 }

}

SECONDSERVLET.JAVA

import java.io.*;

www.enosislearning.com

Advance JAVA Tutorials

121

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 //Getting the value from the hidden field

 String n=request.getParameter("uname");

 out.print("Hello "+n);

 out.close();

 }

 catch(Exception e){System.out.println(e);}

 }

}

URL REWRITING IN SERVLET

URL Rewriting track the conversion in server based on unique session ID value.

WHEN USE URL REWRITING ?

If the client has disabled cookie in the browser then coockie are not work for session

management. In that case you can use URL rewriting technique for session managment. URL

rewriting will always work.

EXAMPLE OF SESSION TRACKING BY USING URL REWRITING

INDEX.HTML

www.enosislearning.com

Advance JAVA Tutorials

122

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="continue"/>

</form>

FIRSTSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 HttpSession session=request.getSession();

 session.setAttribute("uname",n);

 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SECONDSERVLET.JAVA

www.enosislearning.com

Advance JAVA Tutorials

123

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 //getting value from the query string

 String n=request.getParameter("uname");

 out.print("Hello "+n);

 out.close();

 }

 catch(Exception e){System.out.println(e);}

 }

}

HTTPSESSION IN SERVLET

HttpSession is another kind of session management technique, In this technique create a

session object at server side for each client.

Session is available until the session time out, until the client log out. The default session time

is 30 minutes and can configure explicit session time in web.xml file.

www.enosislearning.com

Advance JAVA Tutorials

124

CONFIGURE SESSION TIME IN WEB.XML

EXAMPLE

<web-app>

<session-config>

<session-timeout>40</session-timeout>

</session-config>

</web-app>

HTTPSESSION API

Http session is an interface define in java.http package.

GETTING SESSION OBJECT

EXAMPLE

HttpSession hs=req.getSession(); // create new session object

METHODS OF HTTPSESSION INTERFACE

Method Description

public HttpSession getSession():

It returns the current session

associated with this request, or

if the request does not have a

session, creates one.

public HttpSession getSession(boolean create)
It returns the current

HttpSession associated with this

request or, if there is no current

www.enosislearning.com

Advance JAVA Tutorials

125

session and create is true,

returns a new session.

public String getId()
It returns a string containing the

unique identifier value.

public long getCreationTime()

It returns the time when this

session was created, measured

in milliseconds since midnight

January 1, 1970 GMT.

public long getLastAccessedTime()

It returns the last time the client

sent a request associated with

this session, as the number of

milliseconds since midnight

January 1, 1970 GMT.

public void invalidate()
Invalidates this session then

unbinds any objects bound to it.

EXAMPLE OF SESSION TRACKING BY USING HTTPSESSION

INDEX.HTML

<form action="servlet1">

Name:<input type="text" name="userName"/>

<input type="submit" value="continue"/>

</form>

FIRSTSERVLET.JAVA

import java.io.*;

www.enosislearning.com

Advance JAVA Tutorials

126

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response){

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");

 out.print("Welcome "+n);

 HttpSession session=request.getSession();

 session.setAttribute("uname",n);

 out.print("visit");

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

SECONDSERVLET.JAVA

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

www.enosislearning.com

Advance JAVA Tutorials

127

public class SecondServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 try{

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 HttpSession session=request.getSession(false);

 String n=(String)session.getAttribute("uname");

 out.print("Hello "+n);

 out.close();

 }catch(Exception e){System.out.println(e);}

 }

}

CHAPTER 5 JSP
INTRODUCTION TO JSP

JSP technology is used to create dynamic web application same like Servlet technology. It is

another web technology given by Sun MicroSystem for the development of dynamic web pages

on the client browser. It provides a tag based approach to develop java web components.

JSP have .jsp extension, we can directly access these JSP pages from client system browser

window. Because jsp pages are contains outside of the WEB-INF folder.

A JSP page consists of Html tags and JSP tags. The jsp pages are easier to maintain than servlet.

It provides some additional features such as Expression Language, Custom Tag etc.

www.enosislearning.com

Advance JAVA Tutorials

128

A JSP is called as page but not program because a JSP contains totally tags. Every JSP is

internally converted into a Servlet by the server container.

WHY JSP ?

The first technology given for the development of web application is CGI. In CGI have some

drawback, So Sun MicroSystem develop a new technology is servlet. But working with Servlet

Sun MicroSystem identify some problem, Servlet technology need in depth java code and

Servlet is failed to attract the programmer.

To overcome the problem with Servlet technology we use jsp technology.

JSP TAG

A JSP page contains both html tags and JSP tags. Html tags will produce static output and JSP

tags will produced dynamic output. Because of JSP tags we called as JSP is dynamic web page.

DIFFERENCE BETWEEN JSP AND HTML

www.enosislearning.com

Advance JAVA Tutorials

129

Html is a Client side Technology and JSP is a Server side Technology. Some other differences

are given below;

 HTML JSP

1
Html is given by w3c (World Wide Web
Consortium).

JSP is given by SunMicro System.

2 Html generated static web pages. JSP generated dynamic web pages.

3
It do not allow to place java code inside Html
pages.

JSP allows to place java code inside JSP
pages.

4 It is Client side technology It is a Server side technology.

5 Need Html Interpreter to execute these code. Need JSP container to execute jsp code.

6
It does not allow to place custom tag or third party
tag.

It allow to place custom tag or third party
tag.

JSP LIFE CYCLE

A JSP life cycle can be defined as the entire process from its creation till the destruction which

is similar to a Servlet life cycle with an additional step which is required to translate a JSP into

Servlet.

LIFE CYCLE OF A JSP PAGE

 Translation of JSP Page to Servlet

 Compilation of JSP Page

 Classloading (class file is loaded by the classloader)

 Instantiation (Object of the Generated Servlet is created).

 Initialization (jspInit() method is invoked by the container).

 Reqeust processing (_jspService() method is invoked by the container).

 Destroy (jspDestroy() method is invoked by the container).

www.enosislearning.com

Advance JAVA Tutorials

130

www.enosislearning.com

Advance JAVA Tutorials

131

LIFE CYCLE METHOD OF JSP

 jspInit()

 _jspService()

 jspDestroy()

We can override jspInti(), jspDestroy(). But we can not override _jspService() method.

To inform the programmer that you should not override the service() method the method

name is started with '_' symbol.

CONFIGURING JSP FILE

Configuring a JSP into a web.xml file is optional because JSP is a public file to the web

application.

www.enosislearning.com

Advance JAVA Tutorials

132

A JSP called a public file and servlet is called a private file of the web application. Because JSP

files stored in root directory of the web application and Servlet class file stored in sub directory

of the web application. Because JSP is the public file, we can directly send a request from a

browser by using its file name.

If we want ot configure a JSP in web.xml file the the xml elements are same as Servlet-

configuration. We need to replace <servlet-class> element with <jsp-file>

Syntax

<web-app>

<servlet>

<servlet-name>test</servlet-name>

<jsp-file>/One</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>test</>

<url-pattern>/srv1</url-pattern>

</servlet-mapping>

</web-app>

Note: If we configure a jsp in web.xml then we can send the request to the jsp either by using

jsp filename or by using its url-pattern.

Example

httpp://localhost:2014/root/One.jsp

 or

httpp://localhost:2014/root/srv1

www.enosislearning.com

Advance JAVA Tutorials

133

Difference Between Servlet And JSP

 Servlet JSP

1 Servlet is faster than jsp
JSP is slower than Servlet because it first translate
into java code then compile.

2

In Servlet, if we modify the code then we
need recompilation, reloading, restarting
the server> It means it is time consuming
process.

In JSP, if we do any modifications then just we
need to click on refresh button and
recompilation, reloading, restart the server is not
required.

3 Servlet is a java code. JSP is tag based approach.

4
In Servlet, there is no such method for
running JavaScript at client side.

In JSP, we can use the client side validations using
running the JavaScript at client side.

5

To run a Servlet you have to make an
entry of Servlet mapping into the
deployment descriptor file i.e. web.xml
file externally.

For running a JSP there is no need to make an
entry of Servlet mapping into the web.xml file
externally, you may or not make an entry for JSP
file as welcome file list.

6 Coding of Servlet is harden than jsp.
Coding of jsp is easier than Servlet because it is
tag based.

7
In MVC pattern, Servlet plays a controller
role.

In MVC pattern, JSP is used for showing output
data i.e. in MVC it is a view.

8 Servlet accept all protocol request. JSP will accept only http protocol request.

9
In Servlet, aervice() method need to
override.

In JSP no need to override service() method.

10
In Servlet, by default session management
is not enabled we need to enable
explicitly.

In JSP, session management is automatically
enabled.

11

In Servlet we do not have implicit object.
It means if we want to use an object then
we need to get object explicitly form the
servlet.

In JSP, we have implicit object support.

www.enosislearning.com

Advance JAVA Tutorials

134

12
In Servlet, we need to implement business
logic, presentation logic combined.

In JSP, we can separate the business logic from
the presentation logic by uses javaBean
technology.

13
In Servlet, all package must be imported
on top of the servlet.

In JSP, package imported anywhere top, middle
and bottom.

Jsp First program

Save and Compile jsp program

JSP program must be save with the .jsp extension. And for compile jsp code simply follow step

of compilation servlet code.

Example

<html>

<body>

<% out.print("Hello word"); %>

</body>

</html>

How to run jsp program

After write your jsp code, deploy jsp program in your root directory and start server. Follow

below steps to run jsp code.

 Deploy jsp code in root directory

 Start Server

 Visit on browser or give request with url like below

Syntax

 http://localhost:portnumber/RootDirectory/jspfile

www.enosislearning.com

Advance JAVA Tutorials

135

Example

http://localhost:2015/jspapplication/index.jsp

Scripting Element

In JSP, java code can be written inside the jsp page using the scriptlet tag. JSP Scripting

element are written inside <% %> tags. These code inside <% %> tags are processed by the

JSP engine during translation of the JSP page.

Jsp scripting elements are classified into two types are;

 Language Based Scripting Element

 Advance Scripting Elements (Expression Language)

Language Based Scripting Element

These are used to defined script in jsp page, this is traditional approach to define the script in

jsp page.

Language Based Scripting Element are classified into 4 types, they are;

 Comment Tag

 Declaration Tag

 Expression Tag

 Scriptlet Tag

Scripting Element Detail

www.enosislearning.com

Advance JAVA Tutorials

136

JSP Comment

This is used to define comment description in jsp page. In jsp page we can insert three types

of comments they are;

 Jsp comment

 Html comment

 Java comment

JSP Comment

This type of comment is called as hidden comment, because it is invisible when a jsp is

translated into a servlet internally.

Syntax

<%-- Comment discription %>

Html Comment

www.enosislearning.com

Advance JAVA Tutorials

137

Html comment tag is common for Html, xml and jsp. In a jsp page if we write html comment

these comment are visible in the _jspService(-,-) of the internal Servlet.

Syntax

<!-- Comment discription -->

Java Comment

We can write a single or multiline comment of java in a scriptlet tag.

Java comment are allowed only inside scriptlet tags because we can insert java code in a jsp

only at a scriptlet tags.

Syntax

// Single line comment

/*

Multiline comment

*/

JSP DECLARATION TAG

This is used to declare variable and methods in jsp page will be translate and define as class

scope declaration in .java file.

The variable and methods will become global to that jsp. It means in that jsp we can use those

variables any where and we can call those method any where.

At the time of translation container inserts the declaration tag into the class. So the variables

become instants variables and methods will become instants methods.

www.enosislearning.com

Advance JAVA Tutorials

138

The code written inside the jsp declaration tag is placed outside the service() method of auto-

generated Servlet, so it does not get memory at each request.

SYNTAX

<%! variable declaration or method declaration %>

JSP EXPRESSION TAG

Expression tag is used, to find the result of the given expression and send that result back to

the client browser. In other words; These are used to show or express the result or response

on browser. We can use this as a display result of variable and invoking method.

Each Expression tag of jsp will be internally converted into out.print() statement. In jsp out is

an implicit object.

One expression tag should contains one java expression only. In a jsp we can use expression

tag for any number of times.

SYNTAX

<%= expression %>

Expression does not need any semicolon (;) by default it places under jsp service() method

scope.

Note: In jsp, the implicit object are allowed into the tags, which are inserted into _jspService(-

,-). An expression tag goes to _jspService(-,-) only. So implicit object are allowed in the

expression tag.

www.enosislearning.com

Advance JAVA Tutorials

139

JSP SCRIPTLET TAG

It use to define or insert java code in a jsp. Every java statement should followed by semicolon

(;). It will be place into jspService() method.

In a jsp implicit object are allowed in expression tags and scriptlet tags but not in the

declaration tags.

SYNTAX

<% java code %>

JSP Implicit Objects

JSP provides standard or predefined implicit objects, which can use directly in JSP page

using JSP Scriptlet. The implicit objects are Servlet API class type and created by JSP containers

There are 9 jsp implicit objects. These objects are created by the web container (JSP

containers) that are available to all the jsp pages.

The available implicit objects are out, request, response, page, pageContext, exception,

config, session and application.

LIST OF ALL 9 IMPLICIT OBJECT ARE;

 Class type Object

1 HttpServletRequest request

2 HttpServletResponse response

3 ServletConfig config

4 ServletContex application

www.enosislearning.com

Advance JAVA Tutorials

140

5 HttpSession session

6 JspWriter/PrintWriter out

7 Exception exception

8 PageContext pagecontext

9 Object page

All implicit objects of jsp are accessible with in the expression and scriptlet of the jsp, but not

accessible in the declaration tags of the jsp.

In a jsp an exception object is available, if isErrorPage is equal to true in page directive.

REQUEST IMPLICIT OBJECT

The JSP request is an implicit object of type HttpServletRequest i.e. created for each jsp

request by the web container. It can be used to get request information such as parameter,

header information, remote address, server name, server port, content type, character

encoding etc.

It can also be used to set, get and remove attributes from the jsp request scope.

Example of request implicit object where we are printing the name of the user with welcome

message.

EXAMPLE OF JSP REQUEST IMPLICIT OBJECT

INDEX.HTML

EXAMPLE

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

www.enosislearning.com

Advance JAVA Tutorials

141

</form>

welcome.jsp

EXAMPLE

<%

String name=request.getParameter("uname");

out.print("welcome "+name);

%>

RESPONSE IMPLICIT OBJECT

In JSP, response is an implicit object of type HttpServletResponse. The instance of

HttpServletResponse is created by the web container for each jsp request.

It can be used to add or manipulate response such as redirect response to another resource,

send error etc.

EXAMPLE OF RESPONSE IMPLICIT OBJECT : INDEX.HTML

EXAMPLE

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

EXAMPLE

www.enosislearning.com

Advance JAVA Tutorials

142

<%

response.sendRedirect("http://www.google.com");

%>

CONFIG IMPLICIT OBJECT

config object is an implicit object of type ServletConfig and it is created by the container,

whenever servlet object is created. This object can be used to get initialization parameter for

a particular JSP page.

config object is created by the web container for every jsp page. It means if a web application

has three jsp pages then three config object are created.

config object is accessible, only if the request is given to the jsp by using its url pattern, but

not with name of the jsp.

EXAMPLE OF CONFIG IMPLICIT OBJECT

INDEX.HTML

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

WEB.XML FILE

<web-app>

<servlet>

<servlet-name>Home</servlet-name>

<jsp-file>/welcome.jsp</jsp-file>

www.enosislearning.com

Advance JAVA Tutorials

143

<init-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>Home</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

WELCOME.JSP

<%

out.print("Welcome "+request.getParameter("uname"));

String driver=config.getInitParameter("dname");

out.print("driver name is="+driver);

%>

PAGE IMPLICIT OBJECT

In JSP, page is an implicit object of type Object class. When a jsp is translated to an internal

Servlet, we can find the following statement in the service() method ofservlet.

Object page=this;

For using this object it must be cast to Servlet type.For example:

EXAMPLE

www.enosislearning.com

Advance JAVA Tutorials

144

<% (HttpServlet)page.log("message"); %>

Since, it is of type Object it is less used because you can use this object directly in jsp.For

example:

EXAMPLE

<% this.log("message"); %>

SESSION IMPLICIT OBJECT

In JSP, session is an implicit object of type HttpSession.This object used to set,get or remove

attribute or to get session information.

EXAMPLE OF SESSION IMPLICIT OBJECT : INDEX.HTML

EXAMPLE

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

EXAMPLE

<%

String name=request.getParameter("uname");

out.print("Welcome "+name);

session.setAttribute("user",name);

second jsp page

www.enosislearning.com

Advance JAVA Tutorials

145

%>

One.jsp

EXAMPLE

<%

String name=(String)session.getAttribute("user");

out.print("Hello "+name);

%>

EXCEPTION IMPLICIT OBJECT

JSP, exception is an implicit object of type java.lang.Throwable class. This object can be used

to print the exception. But it can only be used in error pages.

EXAMPLE OF EXCEPTION IMPLICIT OBJECT

INDEX.HTML

EXAMPLE

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

EXAMPLE

www.enosislearning.com

Advance JAVA Tutorials

146

<%

response.sendRedirect("http://www.google.com");

%>

APPLICATION IMPLICIT OBJECT

In JSP, application is an implicit object of type ServletContext. this application object in the

Servlet programming is ServletContext.

For all jsp in a web application, there must be a single application object with application

object we can share the data from one JSP to any other JSP in the web application.

The instance of ServletContext is created only once by the web container when application or

project is deployed on the server.

This object can be used to get initialization parameter from configuration file (web.xml). It can

also be used to get, set or remove attribute from the application scope.

EXAMPLE OF APPLICATION IMPLICIT OBJECT

INDEX.HTML

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

WELCOME.JSP

<%

out.print("Welcome "+request.getParameter("uname"));

www.enosislearning.com

Advance JAVA Tutorials

147

 String driver=application.getInitParameter("dname");

out.print("driver name is="+driver);

%>

WEB.XML

<web-app>

<servlet>

<servlet-name>One</servlet-name>

<jsp-file>/welcome.jsp</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>One</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

<context-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</context-param>

</web-app>

PAGECONTEXT IMPLICIT OBJECT

www.enosislearning.com

Advance JAVA Tutorials

148

In JSP, pageContext is an implicit object of type PageContext class.The pageContext object can

be used to set,get or remove attribute from one of the following scopes.

 page

 request

 session

 application

 index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%

<%

 String name=request.getParameter("uname");

out.print("Welcome "+name);

 pageContext.setAttribute("user",name,PageContext.SESSION_SCOPE);

 One jsp page

 %>

One.jsp

String name=(String)pageContext.getAttribute("user",PageContext.SESSION_SCOPE);

out.print("Hello "+name);

JSP DIRECTIVE ELEMENTS

www.enosislearning.com

Advance JAVA Tutorials

149

The directive elements are used to do page related operation during page translation time.

JSP supports 3 types of directive elements, they are;.

 Page directive

 Include directive

 Taglib directive

Syntax of directive elements

<@ directive attribute="value" %>

PAGE DIRECTIVE

The page directive defines attributes that apply to an entire JSP page. This element is used to

define default of explicit operation to the jsp.

SYNTAX OF PAGE DIRECTIVE ELEMENTS

SYNTAX

<@ page attribute="value" %>

ATTRIBUTES OF JSP PAGE DIRECTIVE

 import

 contentType

 extends

 language

 buffer

 info

 isELIgnored

 isThreadSafe

 autoFlush

 session

 pageEncoding

www.enosislearning.com

Advance JAVA Tutorials

150

 errorPage

 isErrorPage

JSP INCLUDE DIRECTIVE

It is used to include some other pages into the JSP document, It may be JSP file, html file or
text file. This is known as static include because the target page is located and included at the
time of page compilation.
The jsp page is translated only once so it will be better to include static resource.

ADVANTAGE OF INCLUDE DIRECTIVE : CODE RE-USABILITY

SYNTAX

<%@ include file="resourceName"%>

EXAMPLE

<html>

<body>

<%@ include file="footer.html" %>

 </body>

</html>

Note: The include directive includes the original content, so the actual page size grows at run-

time.

Taglib Directive

This is used to use custom tags in JSP page, here the custom tag may be user defined ot JSTL

tag or strust, JSF,..... etc.

Syntax

www.enosislearning.com

Advance JAVA Tutorials

151

<@ taglib uri="uriofthetaglibrary" prefix="prefixoftaglibrary" %>

Attributes of taglib directive

 uri

Example of JSP Taglib directive

<html>

<body>

 <%@ taglib uri="http://www.tutorial4us.com/customtag/tags" prefix="mytag" %>

 <mytag:currentDate/>

 </body>

</html>

JSP Action Element

Action elements are used to performs specific operation using JSP container, like setting
values into java class, getting values from java class. The JSP action elements classified into
two types are;

 JSP Standard Action Element

 JSP Custom Action Element

The standard action element followed by "JSP" prifix.

<jsp: standard action name>

Standard Action are given by JSP are;

 <jsp: include>

 <jsp: forward>

 <jsp: param>

 <jsp: params>

 <jsp: plugin>

 <jsp: useBean>

www.enosislearning.com

Advance JAVA Tutorials

152

 <jsp: setProperty>

 <jsp: getProperty>

