
 

 

 

 

 

 

 

  

C programming Notes 
Enosis Learning 

 

 



 

Enosis Learning C Notes Page 1 
 

1 C programming Notes 

Chapter 1: Introduction Of C Language 

                   what is C? 

      Where we use C? 

                   Application of c. 

Chapter 2: Getting Started 

                    Structure of c Program. 

                    C Programming output functions (printf ()) 

                    C Programming input functions (scanf ()). 

                    Compiler in C 

                    Comments & Keywords 

                    Data types& Variable                

Chapter3: Operators 

                    What is an operator? 

                    Types Of operators. 

Chapter 4: Decision Statements 

                     Decision making statements 

                     If statements 

                     If –else statements 

                     Else if statements 

                    Switch case 

Chapter 5 : Loop  Statements 

                    What is loop? 

                     For loop. 

                     Do while loop 

                     While loop 

 

         In
d

ex
 

         In
d

ex
 



 

Enosis Learning C Notes Page 2 
 

2 C programming Notes 

Chapter 6 :Functions 

                    What is function? 

                    Use of functions. 

                    Advantage of functions 

                    Types of functions. 

                    Recursion 

                    Storage class. 

Chapter 7 : Array 

                     What is array? 

                     Initialization of array 

                     Types of array 

                      Array of function 

                      String 

                      Initialization of string. 

                      String manipulation functions. 

Chapter 8 : Pointer, structurte &union 

                     What is  Pointer? 

                     What is structure> 

                     Array of structure. 

                     Structure using function. 

   Chapter 9  : File Handling  

                     What is File handling? 

                     Why we use? 

                      File opening mode. 

        

         In
d

ex
 

         In
d

ex
 



 

Enosis Learning C Notes Page 3 
 

3 C programming Notes 

1. Chapter - Introduction Of  C 

What is C Programming Langauge? 

      C is a general-purpose programming language that is extremely popular, simple, and flexible 

to use. It is a structured programming language that is machine-independent and extensively used 

to write various applications, Operating Systems like Windows, and many other complex 

programs like Oracle database, Git, Python interpreter, and more. 

History of C language 

        The base or father of programming languages is ‘ALGOL.’ It was first introduced in 1960. 

‘ALGOL’ was used on a large basis in European countries. ‘ALGOL’ introduced the concept of 

structured programming to the developer community.  

In 1972, a great computer scientist Dennis Ritchie created a new programming language called 

‘C’ at the Bell Laboratories. It was created from ‘ALGOL’, ‘BCPL’ and ‘B’ programming 

languages. ‘C’ programming language contains all the features of these languages and many 

more additional concepts that make it unique from other languages. 

 

Dennis Ritchie 

Where we use C Language: 

C Language is mainly used for; 



 

Enosis Learning C Notes Page 4 
 

4 C programming Notes 

 Design Operating system 

 Design Language Compiler 

 ‘C’ language is widely used in embedded systems. 

 It is used for developing system applications. 

 It is widely used for developing desktop applications. 

 Most of the applications by Adobe are developed using ‘C’ programming language. 

 It is used for developing browsers and their extensions. Google’s Chromium is built using 

‘C’ programming language. 

 It is used to develop databases. MySQL is the most popular database software which is 

built using ‘C’. 

 It is used in developing an operating system. Operating systems such as Apple’s OS X, 

Microsoft’s Windows, and Symbian are developed using ‘C’ language. It is used for 

developing desktop as well as mobile phone’s operating system. 

 It is used for compiler production. 

Design Database 

 Language Interpreters 

 Utilities 

 Network Drivers 

 Assemblers 

Applications of C: 

 C programming language can be used to design the system software like operating system 

and Compiler. 



 

Enosis Learning C Notes Page 5 
 

5 C programming Notes 

 To develop application software like database and spread sheets. 

 UNIX Kernel is completely developed in C Language. 

 C programming language can be used to design the compilers. 

 

Features of C Language 

 

 

 

 

 



 

Enosis Learning C Notes Page 6 
 

6 C programming Notes 

 

How C Programming Language Works? 

C is a compiled language. A compiler is a special tool that compiles the program and converts it 

into the object file which is machine readable. After the compilation process, the linker will 

combine different object files and creates a single executable file to run the program. The 

following diagram shows the execution of a ‘C’ program 

 

Nowadays, various compilers are available online, and you can use any of those compilers. The 

functionality will never differ and most of the compilers will provide the features required to 

execute both ‘C’ and ‘C++’ programs. 

Following is the list of popular compilers available online: 

 Clang compiler 

 MinGW compiler (Minimalist GNU for Windows)Portable ‘C’ compiler 

 Turbo C 

 

 



 

Enosis Learning C Notes Page 7 
 

7 C programming Notes 

 

 

2. Chapter – Getting Started 

 

Structure of c program: 

 

 

The C program Contain the Two Section: 
Include Section 

# include is a pre-processor directive can be used to include all 

the predefined functions of given header files into current C 

program before compilation. 



 

Enosis Learning C Notes Page 8 
 

8 C programming Notes 

Main function 

 

This is starting executable block of any program  One C 

program can have maximum one main() the entire statements 

of given program can be executed through main(). Without 

main() function no C program will be executed. 

 

 

C Programming Input Output (I/O):  

C programming has several in-build library functions to perform input and output tasks. 

 

   printf():- 
               Function sends formatted output to the standard output (screen). 

 

Example 1: C Output 

#include <stdio.h>      //This is needed to run printf() function. 

int main() 

{ 

    printf("C Programming");   

    return 0; 

} 

Output: 

         C Programming 

 

scanf(): 

         function reads formatted input from standard input (keyboard) 

 

Example 3: C Integer Input/Output 

#include <stdio.h> 

int main() 

{ 
Format String For 

Integer 

Displays The Content 

Inside Quotation 



 

Enosis Learning C Notes Page 9 
 

9 C programming Notes 

    int test; 

    printf("Enter an integer: "); 

    scanf("%d",&test);   

    printf("Number = %d",test); 

    return 0; 

} 

 

 

 

Output: 

Enter an integer: 4 

Number = 4 

 

The scanf() function reads formatted input from the keyboard. When user enters an integer, it is 

stored in variable test. Note the '&' sign before test; & test gets the address of test and the value 

is stored in that address. 

 

Compiler in C: 

A compiler is system software which converts programming language code into binary format 

in single steps. 



 

Enosis Learning C Notes Page 10 
 

10 C programming Notes 

 

Comments in C: 

Generally Comments are used to provide the description about the Logic written in program. 

Comments are not display on output screen. 

In 'C' language two types of comments are possible 

Single line comments 

Single line comments can be provided by using / /.................... 

Multiple line comments 

Multiple line comments can be provided by using /*......................*/ 



 

Enosis Learning C Notes Page 11 
 

11 C programming Notes 

 

 

Keywords: 

 

                Keywords are the words whose meaning is already define in c compiler. Keywords are 

also called as reserved words which have special meaning .There  are 32 keywords in c. 

 

 

Auto Double Int Struct 

Break Else Long Switch 

Case Enum Register Typedef 

Char Extern Return Union 

Const  Float Short Unsigned 

Continue For Signed Void 

Default Goto Sizeof Volitle 

Do If Static While 



 

Enosis Learning C Notes Page 12 
 

12 C programming Notes 

 

 Data Types 

 

               Data  types  simply  refers to the type and size of data associated with variables and 

functions.The Following diagram shows types c Data types. 

 

 

 

 

 
                              

 

 

Data type Storage Size Value range Example 

Char 1 byte -128 to 127  Char test=’h’; 

Unsigned Char 1 byte 0 to 255  

Signed char 1 byte -128 to 127  

Int  2 byte -32,768 to 32,767 Int no=10; 

Short int 2 byte -32,768 to 32,767  

Long int 2 byte -2,147,483,648 to 

2,147,483,647 

 

Float 4 byte 1.2E-38 to 3.4E+38 float no=3.14;  

Double 8 byte 2.3E-308 to 1.7E+308  

 



 

Enosis Learning C Notes Page 13 
 

13 C programming Notes 

 

 

Variable:             

Variable is an identifier which holds data or another one variable. It is an identifier whose 
value can be changed at the execution time of program. It is used to identify input data in a program. 

Initialization Of Variable: 

 

Example 2: C Integer Output 

#include <stdio.h> 

int main() 

{ 

    int testInteger = 5; 

    printf("Number = %d", testInteger); 

    return 0; 

} 

Output: 

                 Number = 5 

 

 

 

 

 

Variable Declaration & 

Initialization 



 

Enosis Learning C Notes Page 14 
 

14 C programming Notes 

 

 

 

 

 

1 Write a C Program to Print Hello Word 

2 What is Keyword, Variable? 

3 Write a C Program to declaring Variable and Printing its Value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 15 
 

15 C programming Notes 

 

Chapter 3. Operators 
 

                     An operator is a symbol which operates on a value or a variable. For example: + is 

an operator to perform addition’s programming has wide range of operators to perform various 

operations. For better understanding of operators, these operators can be classified as: 

 

 

 

 

Type of Operator Symbolic Representation 

Arithmetic Operators +, -, *, /, % 

Increment and decrement operators ++,-- 

Assignment Operators = 

Relational Operators ==, > , <, >=, <=, != 

Logical Operators &&,  ||, ! 

Bitwise operator &, ! 

Comma Operator , 

Conditional Operator ?: 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 16 
 

16 C programming Notes 

 

 

 

 

 

 

 

 

 

 

No 

Programs 

1 Write a C Program to Calculate Area and Circumference of Circle 

2 Write a C Program to Calculate Area of Triangle 

3 Write a C Program to Calculate Area of Equilateral Triangle 

4 Write a C Program to Find out the Cube of Any no. 

5 Write a C Program to Calculate Area of Circle 

6 Write a C Program to Calculate Area of Rectangle 

7 Write a C Program to Calculate Area of Square 

8 Write a C Program to Add the Five subject of Marks And Calculate its total.  

 

 

 



 

Enosis Learning C Notes Page 17 
 

17 C programming Notes 

 

 

 

 

 

 

 

 

 

 

4. Chapter – Decision Statement 

Decision Making Statement 

Decision making statement is depending on the condition block need to be executed or not 

which is decided by condition. 

If the condition is "true" statement block will be executed, if condition is "false" then statement 

block will not be executed. 

 if 

 if-else 

 else if statement 

1.if statement: 

                    If test expression is evaluated to true (nonzero), statements inside the body of if is 

executed. If test expression is evaluated to false (0), statements inside the body of if are skipped. 

The Following Diagram Contains the Syntax And flowchart 

 

 



 

Enosis Learning C Notes Page 18 
 

18 C programming Notes 

 

Example 1: C if statement 

// Program to display a number if user enters negative 

number 

 

#include <stdio.h> 

int main() 

{ 

    int number; 

 

    printf("Enter an integer: "); 

    scanf("%d", &number); 

 

    // Test expression is true if number is less than 0 

    if (number < 0) 

    { 

        printf("You entered %d.\n", number); 

    } 

 

    printf("The if statement is easy."); 

 

    return 0; 

} 



 

Enosis Learning C Notes Page 19 
 

19 C programming Notes 

Output : 

 

Enter an integer: -2 

You entered -2. 

The if statement is easy. 

 

2.if...else statement: 

 

         If test expression is true, code inside the body of if statement is executed; and code 

inside the body of else statement is skipped. 

If test expression is false, code inside the body of else statement is executed; and code 

inside the body of if statement is skipped. 

 

 
Example 2: C if...else statement 



 

Enosis Learning C Notes Page 20 
 

20 C programming Notes 

// Program to check whether an integer entered by the user is odd or even 

 

#include <stdio.h> 

int main() 

{ 

    int number; 

    printf("Enter an integer: "); 

    scanf("%d",&number); 

 

    // True if remainder is 0 

    if( number%2 == 0 ) 

        printf("%d is an even integer.",number); 

    else 

        printf("%d is an odd integer.",number); 

    return 0; 

} 

Output 

Enter an integer: 7 

7 is an odd integer. 

3.Nested if...else statement (if...else if....else Statement): 

The if...else statement executes two different codes depending upon whether the test expression 

is true or false. Sometimes, a choice has to be made from more than 2 possibilities. 

The nested if...else statement allows you to check for multiple test expressions and execute 

different codes for more than two conditions. 

 
Syntax of nested if...else statement: 

if (testExpression1)  

{ 

   // statements to be executed if testExpression1 is true 

} 

else if(testExpression2)  

{ 

   // statements to be executed if testExpression1 is false and testExpression2 is true 

} 

else if (test Expression 3)  

{ 

   // statements to be executed if testExpression1 and testExpression2 is false and 

testExpression3 is true 

} 

. 

. 

else  



 

Enosis Learning C Notes Page 21 
 

21 C programming Notes 

{ 

   // statements to be executed if all test expressions are false 

} 

 
Example 3: C nested if...else statement 

// Program to relate two integers using =, > or < 

#include <stdio.h> 

int main() 

{ 

    int number1, number2; 

    printf("Enter two integers: "); 

    scanf("%d %d", &number1, &number2); 

 

    //checks if two integers are equal. 

    if(number1 == number2) 

    { 

        printf("Result: %d = %d",number1,number2); 

    } 

 

    //checks if number1 is greater than number2. 

    else if (number1 > number2) 

    { 

        printf("Result: %d > %d", number1, number2); 

    } 

 

    // if both test expression is false 

    else 

    { 

        printf("Result: %d < %d",number1, number2); 

    } 

 

    return 0; 

} 

Output 

Enter two integers: 12 

23 

Result: 12 < 23 

 

 

 



 

Enosis Learning C Notes Page 22 
 

22 C programming Notes 

switch...case Statement: 

The nested if...else statement allows you to execute a block code among many alternatives. If 

you are checking on the value of a single variable in nested if...else statement, it is better to use 

switch statement. The switch statement is often faster than nested if...else (not always). Also, the 

syntax of switch  

 

 

 

 

 

 



 

Enosis Learning C Notes Page 23 
 

23 C programming Notes 

 

Syntax of switch...case: 

switch (n) 

{ 

case constant1: 

           // code to be executed if n is equal to constant1; 

break; 

case constant2: 

               // code to be executed if n is equal to constant2; 

break; 

. 

. 

default: 

               // code to be executed if n doesn't match any constant 

} 

Example: switch Statement 

#include <stdio.h>  

int main () 

{ 

   int value = 3; 

   switch(value) 

   { 

     case 1: 

     printf(“Value is 1 \n” ); 

     break; 

  

     case 2: 

     printf(“Value is 2 \n” ); 

     break;  

     case 3: 

     printf(“Value is 3 \n” ); 

     break;  

     case 4: 

     printf(“Value is 4 \n” ); 

     break;  

     default : 

     printf(“Value is other than 1,2,3,4 \n” ); 

   } 

N Should Be Expression 



 

Enosis Learning C Notes Page 24 
 

24 C programming Notes 

   return 0; 

} 

Output: 

Value is 3 

C Programming go to Statement: 

The goto statement is used to alter the normal sequence of a C program.  

 

Syntax of goto statement: 

goto label; 

... .. ... 

... .. ... 

... .. ... 

label:  

statement; 

The label is an identifier. When goto statement is encountered, control of the program jumps 

tolabel: and starts executing the code. 

 

Label  Name Should Be Like 

Variable Name 



 

Enosis Learning C Notes Page 25 
 

25 C programming Notes 

 

 

Example: goto Statement 

#include <stdio.h> 

int main() 

{ 

   int i; 

   for(i=0;i<10;i++) 

     { 

   if(i==5) 

   { 

     printf("\nWe are using goto statement when i = 5"); 

     goto HAI; 

   } 

   printf("%d ",i); 

}  

HAI : printf("\nNow, we are inside label name \"hai\" \n"); 

} 

Output 

0 1 2 3 4 

We are using goto statement when i = 5 

Now, we are inside label name “hai” 

Reasons to avoid goto statement 

The use of goto statement may lead to code that is buggy and hard to follow. For example: 

one:  

for (i = 0; i < number; ++i) 

{ 

    test += i; 

    goto two; 

} 

two:  

if (test > 5) { 

  goto three; 

} 



 

Enosis Learning C Notes Page 26 
 

26 C programming Notes 

... .. ... 

Also, goto statement allows you to do bad stuff such as jump out of scope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 27 
 

27 C programming Notes 

 

 

No Programs 

1 

 

Write a C program to find maximum between two numbers. 

2 
  Write a C program to find maximum between three numbers. 

3 
  Write a C program to check whether a number is negative, positive or zero. 

4 
  Write a C program to check whether a number is divisible by 5 and 11 or not. 

5 
  Write a C program to check whether a number is even or odd. 

6 
  Write a C program to check whether a year is leap year or not. 

7 
  Write a C program to check whether a character is alphabet or not. 

8 

Write a C program to input marks of five subjects Physics, Chemistry, Biology, 

Mathematics and Computer. Calculate percentage and grade according to following: 

 

Percentage >= 90% : Grade A 

Percentage >= 80% : Grade B 

Percentage >= 70% : Grade C 

Percentage >= 60% : Grade D 

Percentage >= 40% : Grade E 

Percentage < 40% : Grade F 

 

9 
  Write a C program to input any alphabet and check whether it is vowel or consonant. 

 

 

Chapter 4-Exercise(Decision Statements Programs) 



 

Enosis Learning C Notes Page 28 
 

28 C programming Notes 

5. Chapter – Loop  Statement 

C Programming Loop: 

Loops are used in programming to repeat a specific block of code. 

              Loops are used in programming to repeat a specific block until some end condition is 

met. There are three loops in C programming: 

1. for loop 

2. while loop 

3. do...while loop 

1.For Loop: 

              The Following Diagram Contain the Syntax: 

 

 

 
 

Following Chart Contain the Flowchart Of For Loop how Execute the For Loop- 



 

Enosis Learning C Notes Page 29 
 

29 C programming Notes 

 

Example: for loop 

#include <stdio.h> 

 int main () 

 { 

   int a;  

   /* for loop execution */ 

   for( a = 10; a < 20; a = a + 1 ) 

{ 

      printf("value of a: %d\n", a); 

   }  

   return 0; 

} 



 

Enosis Learning C Notes Page 30 
 

30 C programming Notes 

Output:- 

value of a: 10 

value of a: 11 

value of a: 12 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 

value of a: 18 

value of a: 19 

While Loop: 

 

         In while loop First check the condition if condition is true then control goes inside 

the loop body other wise goes outside the body. while loop will be repeats in clock wise 

direction. 

 



 

Enosis Learning C Notes Page 31 
 

31 C programming Notes 

 

 

 

Example 1: while loop 

#include <stdio.h> 

 int main () { 

   /* local variable definition */ 

   int a = 10; 

   /* while loop execution */ 

   while( a < 20 ) { 

      printf("value of a: %d\n", a); 

      a++; 

   }  

   return 0; 

} 

Output 



 

Enosis Learning C Notes Page 32 
 

32 C programming Notes 

value of a: 10 

value of a: 11 

value of a: 12 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 

value of a: 18 

value of a: 19 

2.do...while loop: 

A do-while loop is similar to a while loop, except that a do-while loop is execute at least 

one time. 

A do while loop is a control flow statement that executes a block of code at least once, 

and then repeatedly executes the block, or not, depending on a given condition at the end 

of the block (in while). 

 

 



 

Enosis Learning C Notes Page 33 
 

33 C programming Notes 

Example 2: do...while loop 

#include <stdio.h> 

 int main ()  

{ 

   /* local variable definition */ 

   int a = 10; 

   /* do loop execution */ 

   do { 

      printf("value of a: %d\n", a); 

      a = a + 1; 

   }while( a < 20 ); 

    return 0; 

} 

 

 

 

 

Output:  

value of a: 10 

value of a: 11 

value of a: 12 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 

value of a: 18 

value of a:19 

    

C Programming break and continue Statement: 

It is sometimes desirable to skip some statements inside the loop or terminate the loop 

immediately without checking the test expression. In such cases, break and continue statements 

are used. 

break Statement: 

The break statement terminates the loop immediately when it is encountered. The break 

statement is used with decision making statement such as if...else.

 

Syntax of break statement 



 

Enosis Learning C Notes Page 34 
 

34 C programming Notes 

Break; 

Example: break statement 

#include <stdio.h> 

int main() 

{ 

   int i; 

  for(i=0;i<10;i++) 

   { 

     if(i==5) 

     { 

        printf("\nComing out of for loop when i = 5"); 

        break; 

     } 

     printf("%d ",i); 

   } 

} 

 

Output 

0 1 2 3 4 

Coming out of for loop when i = 5 

In C programming, break statement is also used with switch...case statement. 

continue Statement: 

The continue statement skips some statements inside the loop. The continue statement is used 

with decision making statement such as if...else.

 

Syntax of continue Statement: 

continue; 

Example : continue statement 



 

Enosis Learning C Notes Page 35 
 

35 C programming Notes 

#include <stdio.h> 

int main() 

{ 

   int i; 

   for(i=0;i<10;i++) 

   { 

     if(i==5 || i==6) 

     { 

       printf("\skipping %d from display using " \ 

       "continue statement \n",i); 

       continue; 

     } 

     printf("%d ",i); 

   } 

} 

Output 

0 1 2 3 4 

Skipping 5 from display using continue statement 

Skipping 6 from display using continue statement 

7 8 9 

 

 

 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 36 
 

36 C programming Notes 

 

 

 

 

 

 

 

 

 

  

1 Write a C program to print all natural numbers from 1 to n. - using while loop 

2 Write a C program to print all natural numbers in reverse (from n to 1). - using while loop 

3 Write a C program to print all alphabets from a to z. - using while loop 

4 Write a C program to print all even numbers between 1 to 100. - using while loop 

5 Write a C program to print all odd number between 1 to 100. 

6  Write a C program to find sum of all natural numbers between 1 to n. 

7 
 

Write a C program to count number of digits in any number. 

8 
Write a C program to find HCF (GCD) of two numbers. 

 

9 Write a C program to find LCM of two numbers. 

Chapter 5-Exercise (loop based programs) 



 

Enosis Learning C Notes Page 37 
 

37 C programming Notes 

  

 

10 

 

Write a C program to check whether a number is Prime number or not. 

 

 

 

 

 

 

 

Chapter 6: Functions 
                

    A function is a group of statements that together perform a specific task. Every C 

program has at least one function, which is main(). 

Why use function ? 

Function are used for divide a large code into module, due to this we can easily debug and 

maintain the code. For example if we write a calculator programs at that time we can write 

every logic in a separate function (For addition sum(), for subtraction sub()). Any function can 

be called many times. 

Advantage of Function 

 Code Re-usability 

 Develop an application in module format. 



 

Enosis Learning C Notes Page 38 
 

38 C programming Notes 

 Easily to debug the program. 

 Code optimization: No need to write lot of code. 

 

Types of functions:  

Depending on whether a function is defined by the user or already included in C compilers, there 

are two types of functions in C programming 

There are two types of functions in C programming: 

 Standard library functions 

 User defined functions 

 

 

 

Standard library functions: 

The standard library functions are in-built functions in C programming to handle tasks such as 

mathematical computations, I/O processing, string handling etc. 

The printf() is a standard library function to send formatted output to the screen (display output 

on the screen). This function is defined in "stdio.h" header file. 

There are other numerous library functions defined under "stdio.h", such 

as scanf(), fprintf(),getchar() etc. Once you include "stdio.h" in your program, all these 

functions are available for use. 

User defined function: 

These functions are created by programmer according to their requirement for example suppose 

you want to create a function for add two number then you create a function with name sum() 

this type of function is called user defined function. 

Function Declarations 



 

Enosis Learning C Notes Page 39 
 

39 C programming Notes 

A function declaration is the process of tells the compiler about a function name. The actual 

body of the function can be defined separately. 

Syntax: 

return_type  function_name(parameter); 

 

Note: At the time of function declaration function must be terminated with ;. 

 

Defining a function. 

Defining of function is nothing but give body of function that means write logic inside function 

body. 

Syntax: 

return_type  function_name(parameter) 

{ 

function body; 

} 

 

 

 Return type: A function may return a value. The return_type is the data type of the value 

the function returns.Return type parameters and returns statement are optional. 

 Function name: Function name is the name of function it is decided by programmer or 

you. 



 

Enosis Learning C Notes Page 40 
 

40 C programming Notes 

 Parameters: This is a value which is pass in function at the time of calling of function A 

parameter is like a placeholder. It is optional. 

 Function body: Function body is the collection of statements. 

calling a function. 

When we call any function control goes to function body and execute entire code. For call any 

function just write name of function and if any parameter is required then pass parameter. 

Syntax: 

Function_name(); 

Example: User-defined function 

Here is a example to add two integers. To perform this task, a user-defined function 

addNumbers() is defined. 

#include <stdio.h> 

int addNumbers(int a, int b);        

int main() 

{ 

    int n1,n2,sum; 

    printf("Enters two numbers: "); 

    scanf("%d %d",&n1,&n2); 

    sum = addNumbers(n1, n2);         

    printf("sum = %d",sum); 

    return 0; 

} 

int addNumbers(int a,int b)         // function definition    

{ 

    int result; 

    result = a+b; 

    return result;                  // return statement 

} 

Function Declaration 

Function Call 



 

Enosis Learning C Notes Page 41 
 

41 C programming Notes 

Types Of User Defined Functions: 

For better understanding of arguments and return value from the function, user-defined functions 

can be categorized as: 

 Function with no arguments and no return value 

 Function with no arguments and a return value 

 Function with arguments and no return value 

 Function with arguments and a return value. 

The following  programs below write a program to print an sum of two numbers. And, all these 

programs generate the same output. 

Example 1: No arguments passed and no return Value 

 

#include <stdio.h> 

void sum(); 

int main() 

{ 

    sum();    // no argument is passed to sum() 

    return 0; 

} 

// return type of the function is void becuase no value is returned from the 

function 

void sum() 

{ 

    int a, b, sum; 

    printf("Enter a first no: "); 

    scanf("%d",&a); 

printf("Enter a second no: "); 

    scanf("%d",&b); 

sum=a+b; 

printf(“Sum=%d”,sum); 

} 

The empty parentheses in sum(); statement inside the main() function indicates that no argument 

is passed to the function. 

The return type of the function is void. Hence, no value is returned from the function. 

The sum() function takes input from the user, print the addition of two numbers. 

Example 2: No arguments passed but a return value 



 

Enosis Learning C Notes Page 42 
 

42 C programming Notes 

#include <stdio.h> 

int getInteger(); 

int main() 

{ 

    int n, i, flag = 0; 

 

    // no argument is passed to the function 

    // the value returned from the function is assigned to n 

    n = getInteger(); 

    for(i=2; i<=n/2; ++i) 

    { 

        if(n%i==0){ 

            flag = 1; 

            break; 

        } 

    } 

    if (flag == 1) 

        printf("%d is not a prime number.", n); 

    else 

        printf("%d is a prime number.", n); 

    return 0; 

} 

// getInteger() function returns integer entered by the user 

int getInteger() 

{ 

    int n; 

    printf("Enter a positive integer: "); 

    scanf("%d",&n); 

    return n; 

} 

The empty parentheses in n = getInteger(); statement indicates that no argument is passed to the 

function. And, the value returned from the function is assigned to n. 

Here, the getInteger() function takes input from the user and returns it. The code to check 

whether a number is prime or not is inside the main() function. 

Example3: Argument passed but no return value 



 

Enosis Learning C Notes Page 43 
 

43 C programming Notes 

#include <stdio.h> 

void sum(int a,int b); 

int main() 

{ 

 int a, b; 

  printf("Enter a first no: "); 

  scanf("%d",&a); 

  printf("Enter a second no: "); 

  scanf("%d",&b); 

   sum(a,b);     

  return 0; 

} 

void sum(int a,int b) 

{    

int res; 

res=a+b; 

printf("Sum=%d",res); 

} 

The integer value entered by the user is passed to sum() function. 

Here, the sum() function checks whether the argument passed is a prime number or not and 

displays the appropriate message. 

Example 4: Argument passed and a return value 

#include <stdio.h> 

int sum(int a,int b); 

int main() 

{ 

 int a, b,res; 

   printf("Enter a first no: "); 

    scanf("%d",&a); 

printf("Enter a second no: "); 

    scanf("%d",&b); 

   res= sum(a,b); 

     printf("Sum=%d",res); 

     return 0; 

} 

int sum(int a,int b) 

{    

int res; 

res=a+b; 

return res; 

} 

The input from the user is passed to sum() function. 



 

Enosis Learning C Notes Page 44 
 

44 C programming Notes 

C Programming Recursion: 

A function that calls itself is known as recursive function. And, this technique is known as 

recursion. 

 

How recursion works? 

void recurse() 

{ 

    ... .. ... 

    recurse(); 

    ... .. ... 

} 

 

int main() 

{ 

    ... .. ... 

    recurse(); 

    ... .. ... 

} 

 

 

 

 

 

 

 

Example: Sum of Natural Numbers Using Recursion 

#include <stdio.h> 

int sum(int n); 

int main() 

{ 

    int number, result; 

    printf("Enter a positive integer: "); 

    scanf("%d", &number); 

    result = sum(number); 

    printf("sum=%d", result); 

} 

int sum(int n) 

{ 

    if (n!=0) 



 

Enosis Learning C Notes Page 45 
 

45 C programming Notes 

        return n + sum(n-1); // sum() function calls itself 

    else 

        return n; 

} 

Output 

Enter a positive integer: 

3 

6 

Initially, the sum() is called from the main() function with number passed as an argument. 

Suppose, the value of n is 3 initially. During next function call, 2 is passed to the sum() function. 

In next function call, 1 is passed to the function. This process continues until n is equal to 0. 

When n is equal to 0, there is no recursive call and the sum of integers is returned to 

the main()function. 

 

Advantages and Disadvantages of Recursion: 

Recursion makes program elegant and cleaner. All algorithms can be defined recursively which 

makes it easier to visualize and prove.  

If the speed of the program is vital then, you should avoid using recursion. Recursions use more 

memory and are generally slow. 

 

Storage Class: 

storage class determines the scope and  lifetime of a variable. 

There are 4 types of storage class: 

1. automatic 

2. external 



 

Enosis Learning C Notes Page 46 
 

46 C programming Notes 

3. static 

4. register 

Local Variable 

The variables declared inside the function are automatic or local variables. 

The local variables exist only inside the function in which it is declared. When the function exits, 

the local variables are destroyed. 

int main() { 

    int n; 

    ... .. ... 

} 

 

void func() { 

   int n1; // n1 is local to func() fucntion 

} 

Global Variable: 

Variables that are declared outside of all functions are known as external variables. External or 

global variables are accessible to any function. 

 

 

 

 

Example 1: External Variable 

#include <stdio.h> 

void display(); 

int n = 5;   

int main() 

{ 

    ++n;     // variable n is not declared in the main() function 

    display(); 

Local Variable 

Global Variable 



 

Enosis Learning C Notes Page 47 
 

47 C programming Notes 

    return 0; 

} 

void display() 

{ 

    ++n;     // variable n is not declared in the display() function 

    printf("n = %d", n); 

} 

Output: 

          n=7 

Suppose, a global variable is declared in file1. If you try to use that variable in a different 

filefile2, the compiler will complain. To solve this problem, keyword extern is used in file2 to 

indicate that the external variable is declared in another file. 

Auto Variable: 

              The auto storage class is the default storage class for all local variables. The 

scope auto variable is within the function. It is equivalent to local variable. 

Syntax: 

     Auto int a; 

Register Variable: 

The register keyword is used to declare register variables. Register variables were supposed to 

be faster than local variables. 

However, modern compilers are very good at code optimization and there is a rare chance that 

using register variables will make your program faster.  

Unless you are working on embedded system where you know how to optimize code for the 

given application, there is no use of register variables. 

Static Variable: 

A static variable is declared by using keyword static. For example; 

static int i; 



 

Enosis Learning C Notes Page 48 
 

48 C programming Notes 

The value of a static variable persists until the end of the program. 

 

Example 2: Static Variable 

#include <stdio.h> 

void display(); 

int main() 

{ 

    display(); 

    display(); 

} 

void display() 

{ 

    static int c = 0; 

    printf("%d  ",c); 

    c += 5; 

} 

Output 

0 5 

During the first function call, the value of c is equal to 0. Then, it's value is increased by 5. 

During the second function call, variable c is not initialized to 0 again. It's because c is a static 

variable. So, 5 is displayed on the screen. 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 49 
 

49 C programming Notes 

 

 

1 

 

Write a C program to find cube of any number using function. 

. 

2 
Write a C program to find diameter, circumference and area of circle using functions. 

 

3 
 Write a C program to find maximum and minimum between two numbers using functions. 

 

4 

  Write a C program to check whether a number is even or odd using functions. 

   

 

5 

 

Write a C program to check whether a number is prime, Armstrong or perfect number using 

functions. 

   

 

6 

 

Write a C program to find all prime numbers between given interval using functions. 

 

 

7 

 

Write a C program to print all strong numbers between given interval using functions. 

  

 

8 
Write a C program to print all Armstrong numbers between given interval using functions. 

 

9   Write a C program to print all perfect numbers between given interval using functions 

 

 



 

Enosis Learning C Notes Page 50 
 

50 C programming Notes 

Chapter 7:Array 

Array in C Language: 

An array is a collection of similar data type value in a single variable. It is a derived data type 

in C, which is constructed from fundamental data type of C language. 

How Array Works : 

 

An array is a sequence of data item of homogeneous value(same type). 

Arrays are of two types: 

1. One-dimensional arrays 

2. Multidimensional arrays 

1) One Dimensional arrays: 

Syntax of one dimensional array is as follows: 

 

data_type array_name[array_size]; 

 

Initialization of one-dimensional array: 

Arrays can be initialized at declaration time in  this source code as: 



 

Enosis Learning C Notes Page 51 
 

51 C programming Notes 

int age[5]={2,4,34,3,4}; 

It is not necessary to define the size of arrays during initialization. 

int age[]={2,4,34,3,4}; 

In this case, the compiler determines the size of array by calculating the number of elements of 

an array. 

 

Accessing array elements: 

/* C program to find the sum marks of n students using arrays */ 

#include <stdio.h> 

int main(){ 

     int marks[10],i,n,sum=0; 

     printf("Enter number of students: "); 

     scanf("%d",&n); 

     for(i=0;i<n;++i) 

{ 

          printf("Enter marks of student%d: ",i+1); 

          scanf("%d",&marks[i]); 

          sum+=marks[i]; 

     } 

     printf("Sum= %d",sum); 

return 0; 

} 

 

Output 
Enter number of students: 3 

Enter marks of student1: 12 

Enter marks of student2: 31 

Enter marks of student3: 2 

sum=45 

 

 

 

 

Accepting The Array 

element 



 

Enosis Learning C Notes Page 52 
 

52 C programming Notes 

Two Dimensional Arrays 

The Syntax of two dimensional array as define is as follws: 

 

 

Example of Two Dimensional  Array In C 

Write a C program to find sum of two matrix of order 2*2 using multidimensional arrays where, 

elements of matrix are entered by user. 

#include <stdio.h> 

  

int main() 

{ 

   int m, n, c, d, first[10][10], second[10][10], sum[10][10]; 

  

   printf("Enter the number of rows and columns of matrix\n"); 

   scanf("%d%d", &m, &n); 

   printf("Enter the elements of first matrix\n");  

   for (c = 0; c < m; c++) 

      for (d = 0; d < n; d++) 

         scanf("%d", &first[c][d]); 

   printf("Enter the elements of second matrix\n"); 

   for (c = 0; c < m; c++) 

      for (d = 0 ; d < n; d++) 

            scanf("%d", &second[c][d]); 

  

   printf("Sum of entered matrices:-\n"); 

  

   for (c = 0; c < m; c++) { 

      for (d = 0 ; d < n; d++) { 

         sum[c][d] = first[c][d] + second[c][d]; 

         printf("%d\t", sum[c][d]); 

      } 

      printf("\n"); 

   }  

   return 0; 

} 

Ouput: 
Enter the number of rows and columns of matrix 

2 

2 

First Matrix :- 

1 2 

3 4 

datatype arrayname[size][size]; 



 

Enosis Learning C Notes Page 53 
 

53 C programming Notes 

Second matrix :- 

4 5 

-1 5 

sum of entered matrix is: 

5 7 

2 9 

C Programming Arrays and Functions: 

 In C programming, a single array element or an entire array can be passed to a function. Also, 

both one-dimensional and multi-dimensional array can be passed to function as argument. 

Passing One-dimensional Array In Function 

C program to pass a single element of an array to function 

 

 

 

#include <stdio.h> 

void display(int a) 

   { 

   printf("%d",a); 

   } 

int main(){ 

   int c[]={2,3,4}; 

   display(c[2]);  //Passing array element c[2] only. 

   return 0; 

} 

Output 

4 

Single element of an array can be passed in similar manner as passing variable to a function. 

Passing entire one-dimensional array to a function 

While passing arrays to the argument, the name of the array is passed as an argument(,i.e, 

starting address of memory area is passed as argument). 

#include<stdio.h> 

#include<conio.h> 

//--------------------------------- 

void fun(int arr[]) 

{ 

int i; 



 

Enosis Learning C Notes Page 54 
 

54 C programming Notes 

for(i=0;i< 5;i++) 

 arr[i] = arr[i] + 10; 

} 

//-------------------------------- 

void main() 

{ 

int arr[5],i; 

clrscr(); 

printf("\nEnter the array elements : "); 

for(i=0;i< 5;i++) 

 scanf("%d",&arr[i]); 

 

printf("\nPassing entire array ....."); 

fun(arr);  // Pass only name of array 

 

for(i=0;i< 5;i++) 

 printf("\nAfter Function call a[%d] : %d",i,arr[i]); 

 

getch(); 

} 

Output 

Enter the array elements : 1 2 3 4 5 

Passing entire array ..... 

After Function call a[0] : 11 

After Function call a[1] : 12 

After Function call a[2] : 13 

After Function call a[3] : 14 

After Function call a[4] : 15 

 

Passing Multi-dimensional Arrays to Function 

To pass two-dimensional array to a function as an argument, starting address of memory area 

reserved is passed as in one dimensional array 

Example to pass two-dimensional arrays to function 

#include<stdio.h> 

void Function(int c[2][2]); 

int main(){ 

   int c[2][2],i,j; 

   printf("Enter 4 numbers:\n"); 

   for(i=0;i<2;++i) 

      for(j=0;j<2;++j){ 

           scanf("%d",&c[i][j]); 



 

Enosis Learning C Notes Page 55 
 

55 C programming Notes 

      } 

   Function(c);   /* passing multi-dimensional array to function */ 

   return 0; 

} 

void Function(int c[2][2]){ 

/* Instead to above line, void Function(int c[][2]){ is also valid */ 

   int i,j; 

   printf("Displaying:\n"); 

   for(i=0;i<2;++i) 

      for(j=0;j<2;++j) 

          printf("%d\n",c[i][j]); 

} 

Output 

Enter 4 numbers: 

2 

3 

4 

5 

Displaying: 

2 

3 

4 

5 

String: 

                   String is a collection of character or group of character, it is achieve in C language 

by using array character. The string in C language is one-dimensional array of character which 

is terminated by a null character '\0'. In other words string is a collection of character which is 

enclose between double cotes ( " " ). 

Declaration of strings: 

Strings are declared in C in similar manner as arrays. Only difference is that, strings are of char 

type. 

char s[5]; 

 



 

Enosis Learning C Notes Page 56 
 

56 C programming Notes 

Initialization of strings: 

In C, string can be initialized in different number of ways. 

 

char c[]="abcd"; 

     OR, 

char c[5]="abcd"; 

     OR, 

char c[]={'a','b','c','d','\0'}; 

     OR; 

char c[5]={'a','b','c','d','\0'}; 

 

 

Reading Strings from user. 

char c[20]; 

scanf("%s",c); 

String variable c can only take a word. It is beacause when white space is encountered, the 

scanf() function terminates. 

Write a C program to illustrate how to read string from terminal. 

#include <stdio.h> 

int main(){ 

    char name[20]; 

    printf("Enter name: "); 

    scanf("%s",name); 

    printf("Your name is %s.",name); 

    return 0; 

} 

 



 

Enosis Learning C Notes Page 57 
 

57 C programming Notes 

Output: 

Enter name: Dennis Ritchie 

Your name is Dennis. 

Here, program will ignore Ritchie because, scanf() function takes only string before the white 

space. 

Reading a line of text: 

This process to take string is tedious. There are predefined functions gets() and puts in C 

language to read and display string respectively. 

int main(){ 

    char name[30]; 

    printf("Enter name: "); 

    gets(name);     //Function to read string from user. 

    printf("Name: "); 

    puts(name);    //Function to display string. 

    return 0; 

} 

Both, the above program has same output below: 

Output: 

Enter name: Tom Hanks 

Name: Tom Hanks 

Passing Strings to Functions: 

String can be passed to function in similar manner as arrays as, string is also an array. 

#include<stdio.h> 

void Display(char ch[]); 

int main(){ 

    char c[50]; 

    printf("Enter string: "); 

    gets(c);              

    Display(c);     // Passing string c to function.     

    return 0; 

} 

void Display(char ch[]){ 

    printf("String Output: "); 

    puts(ch);} 

Here, string c is passed from main() function to user-defined function Display(). In function 

declaration, ch[] is the formal argument.  



 

Enosis Learning C Notes Page 58 
 

58 C programming Notes 

String Manipulations Functions: 

There are numerous functions defined in "string.h" header file. Few commonly used string 

handling functions are discussed below: 

 

Function 

 

Work of Function 

strlen() Calculates the length of string 

strcpy() Copies a string to another string 

strcat() Concatenates(joins) two strings 

strcmp() Compares two string 

strlwr() Converts string to lowercase 

strupr() Converts string to uppercase 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 59 
 

59 C programming Notes 

  

1 

Write a C program to read and print elements of array. - using recursion. 

2 Write a C program to print all negative elements in an array. 

3 Write a C program to find sum of all array elements. - using recursion. 

4 Write a C program to find maximum and minimum element in an array. - using recursion. 

5 Write a C program to find second largest element in an array. 

6 Write a C program to count total number of even and odd elements in an array. 

7 Write a C program to count total number of negative elements in an array 

8 Write a C program to find length of a string. 

9 Write a C program to copy one string to another string. 

10 Write a C program to concatenate two strings. 

11 Write a C program to compare two strings. 

12 
Write a C program to convert lowercase string to uppercase. 

Write a C program to convert uppercase string to lowercase 

 

 

 

 

 

 

Chapter 7: Exercise(Array & String) 



 

Enosis Learning C Notes Page 60 
 

60 C programming Notes 

 

 

Chapter 8: Pointer, Structure &union 

Pointer: 

             A pointer is a variable which contains or hold the address of another variable. We can 

create pointer variable of any type of variable for example integer type pointer is  

Syntax: 

        

Datatype * pointer_name 

 

 

 

 

 

 

Symbol Name Description 

& (ampersand 

sign) 

Address of 

operator 
Give the address of a variable 

* (asterisk sign) 
Indirection 

operator 

Gives the contents of an object pointed to by a 

pointer. 

Advantage of pointer: 

 Pointer reduces the code and improves the performance, because it direct access the 

address of variable. 

 Using pointer concept we can return multiple value from any function. 

 Using pointer we can access any memory location from pointer. 

Declaring a pointer 

This sign indentify  the pointer variable. 



 

Enosis Learning C Notes Page 61 
 

61 C programming Notes 

In C language for declared pointer we can use * (asterisk symbol). 

Syntax 

int *p;  //pointer to integer 

char *ch; //pointer to character 

Example of pointer 

In below image pointer variable stores the address of num variable i.e. EEE3. The value of num 

is 50 and address of pointer prt is CCC4 

 

 

Example Of Pointer: 

#include<stdio.h> 

Int main() 

{ 

  Int no=50; 

  Int *ptr; 

  Ptr=&no; 

  Printf(“Address of num variable”,&num) 

  Printf(“address of  stored in ptr variable”,ptr) 

 Printf(“value Of *ptr variable”,*ptr); 

} 

 



 

Enosis Learning C Notes Page 62 
 

62 C programming Notes 

 

 

Structure in C: 

             Structure is a user defined data type which hold or store heterogeneous data item 

Structure is the collection of variables of different types under a single name for better handling.  

Why Use Structure in C 

In C language array is also a user defined data type but array hold or store only similar type of 

data, If we want to store different-different type of data in then we need to defined separate 

variable for each type of data. 

Example: Suppose we want to store Student record, then we need to store.... 

 Student Name 

 Roll number 

 Class 

 Address 

For store Student name and Address we need character data type, for Roll number and class we 

need integer data type. In this case we define the structure. 

 

Structure Definition in C 

Keyword struct is used for creating a structure. 

Syntax of structure 

struct structure_name  

{ 

    data_type member1; 



 

Enosis Learning C Notes Page 63 
 

63 C programming Notes 

    data_type member2; 

    . 

    . 

    data_type memeber; 

}; 

We can create the structure for a person as mentioned above as: 

struct person 

{ 

    char name[50]; 

    int cit_no; 

    float salary; 

}; 

This declaration above creates the derived data type struct person. 

Structure variable declaration: 

When a structure is defined, it creates a user-defined type but, no storage is allocated. For the 

above structure of person, variable can be declared as: 

struct person 

{ 

    char name[50]; 

    int cit_no; 

    float salary; 

}; 

Inside main function: 

struct person p1, p2, p[20]; 

Another way of creating sturcture variable is: 

struct person 

{ 

    char name[50]; 

    int cit_no; 

    float salary; 

}p1 ,p2 ,p[20]; 

In both cases, 2 variables p1, p2 and array p having 20 elements of type struct person are 

created. 

Accessing members of a structure 

Structure Variable 

Declaration/Objects 



 

Enosis Learning C Notes Page 64 
 

64 C programming Notes 

There are two types of operators used for accessing members of a structure. 

1. Member operator(.) 

2. Structure pointer operator(->) (will be discussed in structure and pointers chapter) 

Any member of a structure can be accessed as: structure_variable_name.member_name 

Suppose, we want to access salary for variable p2. Then, it can be accessed as: 

p2.salary 

Example of structure 

#include <stdio.h> 

#include <string.h>  

struct student  

{ 

           int id; 

           char name[20]; 

           float percentage; 

};  

int main()  

{ 

           struct student record;  

          Printf(“Enter id ane name ane per”); 

          Scanf(“%d%s%f”,&record.id,record.name,& record.percentage); 

           printf(" Id is: %d \n", record.id); 

           printf(" Name is: %s \n", record.name); 

           printf(" Percentage is: %f \n", record.percentage); 

           return 0; 

} 

Output: 

Enter id ane name ane per: 

1 

Raju 

86.5 
Id is: 1 

Name is: Raju 

Percentage is: 86.500000 

 

Array Of Structure: 

                     Structure is collection of different datatypes ( variables ) which are grouped together. 

Whereas, array of structures is nothing but collection of structures. This is also called as structure 

array in C. 

Member Operator For 

accessing the variable 

define in the structure 



 

Enosis Learning C Notes Page 65 
 

65 C programming Notes 

 

 

 

EXAMPLE  OR ARRAY OF STRUCTURES IN C: 

 This program is used to store and access “id, name and percentage” for 3 students 

#include <stdio.h> 

#include <string.h>  

struct student  

{ 

     int id; 

     char name[30]; 

     float percentage; 

};  

int main()  

{ 

     int i; 

     struct student record[2]; 

     for(i=0;i<3;i++) 

{ 

printf(“Enter roll no”); 

scanf(“%d”,&record[i].id); 

printf(“Enter name”); 

scanf(“%d”,&record[i].name); 

printf(“Enter percentage”); 

scanf(“%d”,&record[i].percentage) 

} 

     for(i=0; i<3; i++) 

     { 

         printf("     Records of STUDENT : %d \n", i+1); 

         printf(" Id is: %d \n", record[i].id); 

         printf(" Name is: %s \n", record[i].name); 

         printf(" Percentage is: %f\n\n",record[i].percentage); 

     } 

     return 0; 

} 

 

 

Output: 



 

Enosis Learning C Notes Page 66 
 

66 C programming Notes 

Enter rollno:1 

Enter name:arti 

Enter percentage:88.66 

Enter rollno:2 

Enter name:akshay 

Enter percentage:77.66 

Enter rollno:3 

Enter name:smita 

Enter percentage:88.66 

Records of STUDENT : 1 

Id is: 1 

Name is: Raju 

Percentage is: 86.500000 

Records of STUDENT : 2 

Id is: 2 

Name is: Surendren 

Percentage is: 90.500000 

Records of STUDENT : 3 

Id is: 3 

Name is: Thiyagu 

Percentage is: 81.500000 

Structure using Function: 

         A structure variable can be passed to the function as an argument as normal variable. If 

structure is passed by value, change made in structure variable in function definition does not 

reflect in original structure variable in calling function. 

Write a C program to create a structure student, containing name and roll. Ask user the 

name and roll of a student in main function. Pass this structure to a function and display 

the information in that function. 



 

Enosis Learning C Notes Page 67 
 

67 C programming Notes 

#include <stdio.h> 

struct student{ 

    char name[50]; 

    int roll; 

}; 

void Display(struct student stu); 

/* function prototype should be below to the structure declaration otherwise 

compiler shows error */ 

int main(){ 

    struct student s1; 

    printf("Enter student's name: "); 

    scanf("%s",&s1.name); 

    printf("Enter roll number:"); 

    scanf("%d",&s1.roll); 

    Display(s1);   // passing structure variable s1 as argument 

    return 0; 

} 

void Display(struct student stu){ 

  printf("Output\nName: %s",stu.name); 

  printf("\nRoll: %d",stu.roll); 

} 

Output 

Enter student's name: Akshay jadhv 

Enter roll number: 149 

Output 

Name: Akshay jadhv 

Roll: 149 

Unions: 

                              Unions are quite similar to the structures in C. Union is also a derived type as 

structure. Union can be defined in same manner as structures just the keyword used in defining 

union in union where keyword used in defining structure was strut. 

Syntax: 

 

union car{ 

  char name[50]; 

  int price;}; 



 

Enosis Learning C Notes Page 68 
 

68 C programming Notes 

Advantage of union over structure 

It occupies less memory because it occupies the memory of largest member only. 

Disadvantage of union over structure 

It can store data in one member only. 

Difference between union and structure 

Though unions are similar to structure in so many ways, the difference between them is crucial 

to understand. This can be demonstrated by this example: 

#include <stdio.h> 

union job {          

   char name[32]; 

   float salary; 

   int worker_no; 

}u; 

struct job1 { 

   char name[32]; 

   float salary; 

   int worker_no; 

}s; 

int main(){ 

   printf("size of union = %d",sizeof(u)); 

   printf("\nsize of structure = %d", sizeof(s)); 

   return 0; 

} 

Output 
size of union = 32 

size of structure = 40 

There is difference in memory allocation between union and structure as suggested in above 

example. The amount of memory required to store a structure variables is the sum of memory 

size of all members. 

 

 

 

Defining a union 

Defining a Structure 



 

Enosis Learning C Notes Page 69 
 

69 C programming Notes 

 

 

 

Difference between Structure and Union 

 Structure Union 

1 
For defining structure use 

struct keyword. 
For defining union we use union keyword 

2 
Structure occupies more 

memory space than union. 
Union occupies less memory space than Structure. 

3 

In Structure we can access 

all members of structure at 

a time. 

In union we can access only one member of union at a time. 

4 

Structure allocates separate 

storage space for its every 

members. 

Union allocates one common storage space for its all 

members. Union find which member need more memory 

than other member, then it allocate that much space 

Union Example: 

          As you know, all members of structure can be accessed at any time. But, only one member 

of union can be accessed at a time in case of union and other members will contain garbage 

value. 



 

Enosis Learning C Notes Page 70 
 

70 C programming Notes 

#include <stdio.h> 

union job { 

   char name[32]; 

   float salary; 

   int worker_no; 

}u; 

int main(){ 

   printf("Enter name:\n"); 

   scanf("%s",&u.name); 

   printf("Enter salary: \n"); 

   scanf("%f",&u.salary); 

   printf("Displaying\nName :%s\n",u.name); 

   printf("Salary: %f",u.salary); 

   return 0; 

} 

Output 

Enter name  

smita 

Enter salary 

99.66 

Displaying 

Name: f%Bary    

Salary: 99.66 

 

 

 

 

 

 

 

 

 

 

 



 

Enosis Learning C Notes Page 71 
 

71 C programming Notes 

 

 

 

 

 

 

 

 

 

 

  

1 Write a program in C to add two numbers using pointers 

2  Write a program in C to swap elements using call by reference 

3 Write a C program to read and print elements of array.  

4 Write a C program to print all negative elements in an array. 

5 Write a C program to find sum of all array elements. 

6 Write a C program to find maximum and minimum element in an array. 

7 
 

Write a C program to add two matrices. 

8 Write a C program to subtract two matrices. 

9 Write a C program to multiply two matrices. 

 

 

Chapter 8-Exercise 



 

Enosis Learning C Notes Page 72 
 

72 C programming Notes 

 

 

 

 

 

 

 

 

Chapter 9:File handling 

File Handling: 

File Handling concept in C language is used for store a data permanently in computer. 

Using this concept we can store our data in Secondary memory (Hard disk). All files related 

function are available in stdio.h header file. 

 

 

 

How to achieve File Handling in C 

For achieving file handling in C we need follow following steps 



 

Enosis Learning C Notes Page 73 
 

73 C programming Notes 

 Naming a file 

 Opening a file 

 Reading data from file 

 Writing data into file 

 Closing a file. 

Why files are needed? 
                  When the program is terminated, the entire data is lost in C programming. If you want to keep large 
volume of data, it is time consuming to enter the entire data. But, if file is created, these information can be 
accessed using few commands. There are large numbers of functions to handle file I/O in C language.  
 
 

Advantage of File: 

It will contain the data even after program exit. Normally we use variable or array to store 

data, but data is lost after program exit. Variables and arrays are non-permanent storage 

medium whereas file is permanent storage medium. 

Working with file 

While working with file, you need to declare a pointer of type file. This declaration is needed for 

communication between file and program 

Syntax: 

 

FILE *ptr; 

 

Functions use in File Handling in C 

S.No Function Operation 

1 fopen() To create a file 

2 fclose() To close an existing file 



 

Enosis Learning C Notes Page 74 
 

74 C programming Notes 

3 getc() Read a character from a file 

4 putc() Write a character in file 

5 fprintf() To write set of data in file 

6 fscanf() To read set of data from file. 

File Opening Mode: 

 

S.No Mode Meaning Purpose 

1 R Reading Open the file for reading only. 

2 W Writing Open the file for writing only. 

3 A Appending Open the file for appending (or adding) data to it. 

Writing to a file: 



 

Enosis Learning C Notes Page 75 
 

75 C programming Notes 

#include <stdio.h> 

int main() 

{ 

   int n; 

   FILE *fptr; 

   fptr=fopen("C:\\program.txt","w"); 

   if(fptr==NULL){ 

      printf("Error!");    

      exit(1);              

   } 

   printf("Enter n: "); 

   scanf("%d",&n); 

   fprintf(fptr,"%d",n);    

   fclose(fptr); 

   return 0; 

} 

This program takes the number from user and stores in file. After you compile and run this 

program, you can see a text file program.txt created in C drive of your computer. When you open 

that file, you can see the integer you entered. 

Similarly, fscanf() can be used to read data from file. 

Reading from file 

#include <stdio.h> 

int main() 

{ 

   int n; 

   FILE *fptr; 

   if ((fptr=fopen("C:\\program.txt","r"))==NULL){ 

       printf("Error! opening file"); 

       exit(1);         /* Program exits if file pointer returns NULL. */ 

   } 

   fscanf(fptr,"%d",&n); 

   printf("Value of n=%d",n);  

   fclose(fptr);    

   return 0; 

} 

 

C Programming Enumeration: 

An enumeration is a user-defined data type consists of integral constants and each integral 

constant is give a name. Keyword enum is used to defined enumerated data type. 

Opening a file 

Printing the Text in to File 

Reading the text from file 



 

Enosis Learning C Notes Page 76 
 

76 C programming Notes 

enum type_name{ value1, value2,...,valueN }; 

Here, type_name is the name of enumerated data type or tag. And value1, value2,....,valueNare 

values of type type_name. 

By default, value1 will be equal to 0, value2 will be 1 and so on but, the programmer can change 

the default value. 

// Changing the default value of enum elements 

enum suit{ 

    club=0; 

    diamonds=10; 

    hearts=20; 

    spades=3; 

}; 

Declaration of enumerated variable 

Above code defines the type of the data but, no any variable is created. Variable of 

type enumcan be created as: 

enum boolean{ 

    false; 

    true; 

}; 

enum boolean check; 

Here, a variable check is declared which is of type enum boolean. 

Example of enumerated type 

#include <stdio.h> 

enum week{ sunday, monday, tuesday, wednesday, thursday, friday, 

saturday}; 

int main(){ 

    enum week today; 

    today=wednesday; 

    printf("%d day",today+1); 

    return 0; 

   } 

Output 

             4day 

 



 

Enosis Learning C Notes Page 77 
 

77 C programming Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

No 

Programs 

1 Write a C Program to copy the contents of one file into another using fputc() 

2 Write a C Program to read last n characters from the file ! 

3 
Write a C Program to convert the file contents in Upper-case & Write Contents in a 

output file 

4 Write a C Program to Compare two text/data files in C Programming 

5 Write a C Program to Write content on Data File and Read From Data File 

6 Write a C Program to Copy Text From One File to Other File 



 

Enosis Learning C Notes Page 78 
 

78 C programming Notes 

  



 

Enosis Learning C Notes Page 79 
 

79 C programming Notes 

 Chapter 10: Pre-processor Directives 

pre-processor : 

                          Preprocessor is a program which will executed automatically before passing 

the source program to compiler. This process is called pre-processing. The preprocessor 

provides the ability for the inclusion of header files, macro expansions, conditional compilation, 

and line control. 

 

Defined Preprocessor Directive: 

Preprocessor Directive can be place any where in the program, but generally it place top of the 

program before defining the first function. 

Use of #include 

Let us consider very common preprocessing directive as below: 

 

#include <stdio.h> 

Here, "stdio.h" is a header file and the preprocessor replace the above line with the contents of 

header file. 

Use of #define 

Preprocessing directive #define has two forms.  



 

Enosis Learning C Notes Page 80 
 

80 C programming Notes 

The first form is: 

#define identifier token_string 

token_string part is optional but, are used almost every time in program. 

C Program to find are 

a of a cricle. [Area of circle=πr2] 

#include <stdio.h> 

#define PI 3.1415 

int main(){ 

    int radius; 

    float area; 

    printf("Enter the radius: "); 

    scanf("%d",&radius); 

    area=PI*radius*radius; 

    printf("Area=%.2f",area); 

    return 0; 

} 

Output 

Enter the radius: 3  

Area=28.27 

Macros: 

         A macro is a segment of code which is replaced by the value of macro. Macro is defined by 

#define directive. 

Predefined Macros in C language 

Predefined macro Value 

__DATE__ String containing the current date 

__FILE__ String containing the file name 

__LINE__ Integer representing the current line number 

__STDC__ If follows ANSI standard C, then value is a 

nonzero integer 

__TIME__ String containing the current date. 

 

 

 

 



 

Enosis Learning C Notes Page 81 
 

81 C programming Notes 

How to use predefined Macros? 

C Program to find the current time 

#include <stdio.h> 

int main(){ 

   printf("Current time: %s",__TIME__);   //calculate the current 

time 

} 

 

Output: 

                                Current time: 19:54:39 

 


